A248410 a(n) = number of polynomials a_k*x^k + ... + a_1*x + n with k > 0, integer coefficients and only distinct integer roots.
3, 11, 11, 23, 11, 43, 11, 47, 23, 43, 11, 103, 11, 43, 43, 83, 11, 103, 11, 103, 43, 43, 11, 223, 23, 43, 47, 103, 11, 187, 11, 139, 43, 43, 43, 275, 11, 43, 43, 223, 11, 187, 11, 103, 103, 43, 11, 427, 23, 103, 43, 103, 11, 223, 43, 223, 43, 43, 11, 503, 11, 43, 103, 227, 43, 187, 11, 103, 43, 187, 11, 635, 11, 43, 103, 103, 43, 187, 11
Offset: 1
Keywords
Examples
a(1)=3: x + 1; -x + 1; -x^2 + 1.
Links
- Reiner Moewald, Table of n, a(n) for n = 1..502
Programs
-
Python
from itertools import chain, combinations def powerset(iterable): s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s)+1)) print("Start") a_n = 0 for num in range(1,1000): div_set = set((-1,1)) a_n = 0 for divisor in range(1, num + 1): if (num % divisor == 0): div_set.add(divisor) div_set.add(divisor*(-1)) pow_set = set(powerset(div_set)) num_set = len(pow_set) for count_set in range(0, num_set): subset = set(pow_set.pop()) num_subset = len(subset) prod = 1 if num_subset < 1: prod = 0 for count_subset in range (0, num_subset): prod = prod * subset.pop() if prod != 0: if (num % prod == 0): a_n = a_n +1 print(num, a_n) print("Ende")
Comments