A248474 Numbers congruent to 13 or 17 mod 30.
13, 17, 43, 47, 73, 77, 103, 107, 133, 137, 163, 167, 193, 197, 223, 227, 253, 257, 283, 287, 313, 317, 343, 347, 373, 377, 403, 407, 433, 437, 463, 467, 493, 497, 523, 527, 553, 557, 583, 587, 613, 617, 643, 647, 673, 677, 703, 707, 733, 737, 763, 767, 793, 797
Offset: 1
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Mathematica
Flatten[Table[{15n - 2, 15n + 2}, {n, 1, 41, 2}]] (* Alonso del Arte, Oct 06 2014 *)
-
PARI
Vec(x*(13*x^2+4*x+13)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Oct 07 2014
-
Python
for n in range(1,101): print (n*30-17), print (n*30-13),
Formula
From Colin Barker, Oct 07 2014: (Start)
a(n) = (-15-11*(-1)^n+30*n)/2.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(13*x^2+4*x+13) / ((x-1)^2*(x+1)). (End)
E.g.f.: 13 + ((30*x - 15)*exp(x) - 11*exp(-x))/2. - David Lovler, Sep 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2*(5+sqrt(5)))+sqrt(3)-sqrt(15))*Pi / (30*(sqrt(6*(5+sqrt(5)))+sqrt(5)-1)). - Amiram Eldar, Jul 30 2024
Comments