cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248474 Numbers congruent to 13 or 17 mod 30.

Original entry on oeis.org

13, 17, 43, 47, 73, 77, 103, 107, 133, 137, 163, 167, 193, 197, 223, 227, 253, 257, 283, 287, 313, 317, 343, 347, 373, 377, 403, 407, 433, 437, 463, 467, 493, 497, 523, 527, 553, 557, 583, 587, 613, 617, 643, 647, 673, 677, 703, 707, 733, 737, 763, 767, 793, 797
Offset: 1

Views

Author

Karl V. Keller, Jr., Oct 06 2014

Keywords

Comments

The combination of A082369(30*n+13) and A128468(30*n+17) is the base sequence for A140533(Primes congruent to 13 or 17 mod 30).

Crossrefs

Cf. A082369 (30*n+13), A128468 (30*n+17).
Cf. A039949 (Primes of the form 30n-13), A132233 (Primes congruent to 13 mod 30), A140533 (Primes congruent to 13 or 17 mod 30).

Programs

  • Mathematica
    Flatten[Table[{15n - 2, 15n + 2}, {n, 1, 41, 2}]] (* Alonso del Arte, Oct 06 2014 *)
  • PARI
    Vec(x*(13*x^2+4*x+13)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Oct 07 2014
  • Python
    for n in range(1,101):
      print (n*30-17),
      print (n*30-13),
    

Formula

From Colin Barker, Oct 07 2014: (Start)
a(n) = (-15-11*(-1)^n+30*n)/2.
a(n) = a(n-1)+a(n-2)-a(n-3).
G.f.: x*(13*x^2+4*x+13) / ((x-1)^2*(x+1)). (End)
E.g.f.: 13 + ((30*x - 15)*exp(x) - 11*exp(-x))/2. - David Lovler, Sep 10 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2*(5+sqrt(5)))+sqrt(3)-sqrt(15))*Pi / (30*(sqrt(6*(5+sqrt(5)))+sqrt(5)-1)). - Amiram Eldar, Jul 30 2024