A248475 Number of pairs of partitions of n that are successors in reverse lexicographic order, but incomparable in dominance (natural, majorization) ordering.
0, 0, 0, 0, 0, 2, 3, 4, 6, 9, 12, 17, 22, 30, 39, 51, 65, 85, 107, 136, 171, 216, 268, 335, 413, 512, 629, 772, 941, 1151, 1396, 1694, 2046, 2471, 2969, 3569, 4271, 5110, 6093, 7258, 8620, 10235, 12113, 14325, 16902, 19925, 23434, 27540, 32296, 37842, 44260, 51715, 60322, 70306, 81805
Offset: 1
Keywords
Examples
The successor pair (3,1,1,1) and (2,2,2) are incomparable in dominance ordering, and so are their transposes (4,1,1) and (3,3) and these are the two only pairs for n=6, hence a(6)=2.
References
- Ian G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1979, pp. 6-8.
Links
- Wikipedia, Dominance Order
Programs
-
Mathematica
Needs["Combinatorica`"]; dominant[par1_?PartitionQ,par2_?PartitionQ]:= Block[{le=Max[Length[par1],Length[par2]],acc}, acc=Accumulate[PadRight[par1,le]]-Accumulate[PadRight[par2,le]];Which[Min[acc]===0&&Max[acc]>=0,1,Min[acc]<=0&&Max[acc]===0,-1,True,0]]; Table[Count[Apply[dominant, Partition[Partitions[n], 2,1], 1],0], {n,40}]
Comments