cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001475 a(n) = a(n-1) + n * a(n-2), where a(1) = 1, a(2) = 2.

Original entry on oeis.org

1, 2, 5, 13, 38, 116, 382, 1310, 4748, 17848, 70076, 284252, 1195240, 5174768, 23103368, 105899656, 498656912, 2404850720, 11879332048, 59976346448, 309442319456, 1628921941312, 8746095288800, 47840221880288, 266492604100288, 1510338372987776
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of set partitions of [n] in which the block containing 1 is of length <= 3 and all other blocks are of length <= 2. Example: a(4)=13 counts all 15 partitions of [4] except 1234 and 1/234. - David Callan, Jul 22 2008
Empirical: a(n) is the sum of the entries in the second-last row of the lower-triangular matrix of coefficients giving the expansion of degree-(n+1) complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			G.f. = x + 2*x + 5*x^2 + 13*x^3 + 38*x^4 + 116*x^5 + 382*x^6 + 1310*x^7 + ... - _Michael Somos_, Jan 23 2018
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86 (divided by 2).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1, 2];; for n in [3..10^2] do a[n] := a[n-1] + n*a[n-2]; od; a;  # Muniru A Asiru, Jan 25 2018
    
  • Magma
    I:=[1,2]; [n le 2 select I[n] else Self(n-1)+n*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 31 2018
    
  • Maple
    a := proc(n) option remember: if n = 1 then 1 elif n = 2 then 2 elif  n >= 3 then procname(n-1) +n*procname(n-2) fi; end:
    seq(a(n), n = 1..100); # Muniru A Asiru, Jan 25 2018
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==2,a[n]==a[n-1]+n a[n-2]},a,{n,30}] (* Harvey P. Dale, Apr 21 2012 *)
    (* Programs from Michael Somos, Jan 23 2018 *)
    a[n_]:= With[{m=n+1}, If[m<2, 0, Sum[(2 k-1)!! Binomial[m, 2 k], {k, 0, m/2}]/2]];
    a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricU[-m/2, 1/2, -1/2] / (-1/2)^(m/2)/2]];
    a[n_]:= With[{m=n+1}, If[m<2, 0, HypergeometricPFQ[{-m/2, (1-m)/2}, {}, 2]/2]];
    a[n_]:= If[ n<1, 0, n! SeriesCoefficient[Exp[x+x^2/2]*(1+x)/2, {x, 0, n}]]; (* End *)
    Fold[Append[#1, #1[[-1]] + #2 #1[[-2]]] &, {1, 2}, Range[3, 26]] (* Michael De Vlieger, Jan 23 2018 *)
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( exp( x + x^2/2 + x * O(x^n)) * (1 + x) / 2, n))}; /* Michael Somos, Jan 23 2018 */
    
  • PARI
    my(N=30,x='x+O('x^N)); Vec(serlaplace((1/2)*( (1+x)*exp(x + x^2/2) - 1))) \\ Joerg Arndt, Sep 04 2023
    
  • SageMath
    def A001475_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( ((1+x)*exp(x+x^2/2) -1)/2 ).egf_to_ogf().list()
    a=A001475_list(40); a[1:] # G. C. Greubel, Sep 03 2023

Formula

a(n) = (1/2)*A000085(n+1).
E.g.f.: (1/2)*( (1+x)*exp(x + x^2/2) - 1). - Vladeta Jovovic, Nov 04 2003
Given e.g.f. y(x), then 0 = y'(x) * (1+x) - (y(x)+1/2) * (2+2*x+x^2) = 1 - y''(x) + y'(x)*(1 + x) + 2*y(x). - Michael Somos, Jan 23 2018
0 = +a(n)*(+a(n+1) +a(n+2) -a(n+3)) +a(n+1)*(-a(n+1) +a(n+2)) for all n>0. - Michael Somos, Jan 23 2018
a(n) ~ n^((n+1)/2) / (2^(3/2) * exp(n/2 - sqrt(n) + 1/4)) * (1 + 19/(24*sqrt(n))). - Vaclav Kotesovec, Apr 01 2018

Extensions

More terms from Harvey P. Dale, Apr 21 2012

A076276 Number of + signs needed to write the partitions of n (A000041) as sums.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 24, 39, 64, 98, 150, 219, 322, 455, 645, 892, 1232, 1668, 2259, 3008, 4003, 5260, 6897, 8951, 11599, 14893, 19086, 24284, 30827, 38888, 48959, 61293, 76578, 95223, 118152, 145993, 180037, 221175, 271186, 331402, 404208, 491521
Offset: 0

Views

Author

Floor van Lamoen, Oct 04 2002

Keywords

Comments

Also, total number of parts in all partitions of n-1 plus the number of emergent parts of n, if n >= 1. Also, sum of largest parts of all partitions of n-1 plus the number of emergent parts of n, if n >= 1. - Omar E. Pol, Oct 30 2011
Also total number of parts that are not the largest part in all partitions of n. - Omar E. Pol, Apr 30 2012
Empirical: For n > 1, a(n) is the sum of the entries in the second column of the lower-triangular matrix of coefficients giving the expansion of degree-n complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			4=1+3=2+2=1+1+2=1+1+1+1, 7 + signs are needed, so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_] := Sum[DivisorSigma[0, k]PartitionsP[n-k], {k, 1, n}]-PartitionsP[n]

Formula

a(n) = (Sum_{k=1..n} tau(k)*numbpart(n-k))-numbpart(n) = A006128(n)-A000041(n), n>0. - Vladeta Jovovic, Oct 06 2002
G.f.: sum(n>=1, (n-1) * x^n / prod(k=1,n, 1-x^k ) ). - Joerg Arndt, Apr 17 2011
a(n) = A006128(n-1) + A182699(n), n >= 1. - Omar E. Pol, Oct 30 2011

Extensions

More terms from Vladeta Jovovic, Robert G. Wilson v, Dean Hickerson and Don Reble, Oct 06 2002

A248476 Number of pairs (not necessarily successors) of partitions of n that are incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 8, 30, 70, 170, 340, 770, 1424, 2810, 5166, 9542, 16614, 29596, 49952, 85610, 141604, 234622, 379218, 616008, 976134, 1549134, 2418768, 3771252, 5795300, 8903306, 13497384, 20438432, 30630108, 45789134, 67857566, 100346480, 147170162, 215341690
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

a(n) is always even since each incomparable pair (p1,p2) has a distinct companion (p2,p1).

Crossrefs

Programs

  • Mathematica
    Table[Count[ Flatten[Outer[dominant , Partitions[n], Partitions[n], 1]], 0], {n, 24}] (* see A248475 for definition of 'dominant' *)

Formula

a(n) = p(n)^2 - A182988(n), where p(n) denotes the number of partitions of n, A000041(n).
Showing 1-3 of 3 results.