cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000085 Number of self-inverse permutations on n letters, also known as involutions; number of standard Young tableaux with n cells.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504, 2390480, 10349536, 46206736, 211799312, 997313824, 4809701440, 23758664096, 119952692896, 618884638912, 3257843882624, 17492190577600, 95680443760576, 532985208200576, 3020676745975552
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of n X n symmetric permutation matrices.
a(n) is also the number of matchings (Hosoya index) in the complete graph K(n). - Ola Veshta (olaveshta(AT)my-deja.com), Mar 25 2001
a(n) is also the number of independent vertex sets and vertex covers in the n-triangular graph. - Eric W. Weisstein, May 22 2017
Equivalently, this is the number of graphs on n labeled nodes with degrees at most 1. - Don Knuth, Mar 31 2008
a(n) is also the sum of the degrees of the irreducible representations of the symmetric group S_n. - Avi Peretz (njk(AT)netvision.net.il), Apr 01 2001
a(n) is the number of partitions of a set of n distinguishable elements into sets of size 1 and 2. - Karol A. Penson, Apr 22 2003
Number of tableaux on the edges of the star graph of order n, S_n (sometimes T_n). - Roberto E. Martinez II, Jan 09 2002
The Hankel transform of this sequence is A000178 (superfactorials). Sequence is also binomial transform of the sequence 1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, ... (A001147 with interpolated zeros). - Philippe Deléham, Jun 10 2005
Row sums of the exponential Riordan array (e^(x^2/2),x). - Paul Barry, Jan 12 2006
a(n) is the number of nonnegative lattice paths of upsteps U = (1,1) and downsteps D = (1,-1) that start at the origin and end on the vertical line x = n in which each downstep (if any) is marked with an integer between 1 and the height of its initial vertex above the x-axis. For example, with the required integer immediately preceding each downstep, a(3) = 4 counts UUU, UU1D, UU2D, U1DU. - David Callan, Mar 07 2006
Equals row sums of triangle A152736 starting with offset 1. - Gary W. Adamson, Dec 12 2008
Proof of the recurrence relation a(n) = a(n-1) + (n-1)*a(n-2): number of involutions of [n] containing n as a fixed point is a(n-1); number of involutions of [n] containing n in some cycle (j, n), where 1 <= j <= n-1, is (n-1) times the number of involutions of [n] containing the cycle (n-1 n) = (n-1)*a(n-2). - Emeric Deutsch, Jun 08 2009
Number of ballot sequences (or lattice permutations) of length n. A ballot sequence B is a string such that, for all prefixes P of B, h(i) >= h(j) for i < j, where h(x) is the number of times x appears in P. For example, the ballot sequences of length 4 are 1111, 1112, 1121, 1122, 1123, 1211, 1212, 1213, 1231, and 1234. The string 1221 does not appear in the list because in the 3-prefix 122 there are two 2's but only one 1. (Cf. p. 176 of Bruce E. Sagan: "The Symmetric Group"). - Joerg Arndt, Jun 28 2009
Number of standard Young tableaux of size n; the ballot sequences are obtained as a length-n vector v where v_k is the (number of the) row in which the number r occurs in the tableaux. - Joerg Arndt, Jul 29 2012
Number of factorial numbers of length n-1 with no adjacent nonzero digits. For example the 10 such numbers (in rising factorial radix) of length 3 are 000, 001, 002, 003, 010, 020, 100, 101, 102, and 103. - Joerg Arndt, Nov 11 2012
Also called restricted Stirling numbers of the second kind (see Mezo). - N. J. A. Sloane, Nov 27 2013
a(n) is the number of permutations of [n] that avoid the consecutive patterns 123 and 132. Proof. Write a self-inverse permutation in standard cycle form: smallest entry in each cycle in first position, first entries decreasing. For example, (6,7)(3,4)(2)(1,5) is in standard cycle form. Then erase parentheses. This is a bijection to the permutations that avoid consecutive 123 and 132 patterns. - David Callan, Aug 27 2014
Getu (1991) says these numbers are also known as "telephone numbers". - N. J. A. Sloane, Nov 23 2015
a(n) is the number of elements x in the symmetric group S_n such that x^2 = e where e is the identity. - Jianing Song, Aug 22 2018 [Edited on Jul 24 2025]
a(n) is the number of congruence orbits of upper-triangular n X n matrices on skew-symmetric matrices, or the number of Borel orbits in largest sect of the type DIII symmetric space SO_{2n}(C)/GL_n(C). Involutions can also be thought of as fixed-point-free partial involutions. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020
From Thomas Anton, Apr 20 2020: (Start)
Apparently a(n) = b*c where b is odd iff a(n+b) (when a(n) is defined) is divisible by b.
Apparently a(n) = 2^(f(n mod 4)+floor(n/4))*q where f:{0,1,2,3}->{0,1,2} is given by f(0),f(1)=0, f(2)=1 and f(3)=2 and q is odd. (End)
From Iosif Pinelis, Mar 12 2021: (Start)
a(n) is the n-th initial moment of the normal distribution with mean 1 and variance 1. This follows because the moment generating function of that distribution is the e.g.f. of the sequence of the a(n)'s.
The recurrence a(n) = a(n-1) + (n-1)*a(n-2) also follows, by writing E(Z+1)^n=EZ(Z+1)^(n-1)+E(Z+1)^(n-1), where Z is a standard normal random variable, and then taking the first of the latter two integrals by parts. (End)

Examples

			Sequence starts 1, 1, 2, 4, 10, ... because possibilities are {}, {A}, {AB, BA}, {ABC, ACB, BAC, CBA}, {ABCD, ABDC, ACBD, ADCB, BACD, BADC, CBAD, CDAB, DBCA, DCBA}. - _Henry Bottomley_, Jan 16 2001
G.f. = 1 + x + 2*x^2 + 4*x^4 + 10*x^5 + 26*x^6 + 76*x^7 + 232*x^8 + 764*x^9 + ...
From _Gus Wiseman_, Jan 08 2021: (Start)
The a(4) = 10 standard Young tableaux:
  1 2 3 4
.
  1 2   1 3   1 2 3   1 2 4   1 3 4
  3 4   2 4   4       3       2
.
  1 2   1 3   1 4
  3     2     2
  4     4     3
.
  1
  2
  3
  4
The a(0) = 1 through a(4) = 10 set partitions into singletons or pairs:
  {}  {{1}}  {{1,2}}    {{1},{2,3}}    {{1,2},{3,4}}
             {{1},{2}}  {{1,2},{3}}    {{1,3},{2,4}}
                        {{1,3},{2}}    {{1,4},{2,3}}
                        {{1},{2},{3}}  {{1},{2},{3,4}}
                                       {{1},{2,3},{4}}
                                       {{1,2},{3},{4}}
                                       {{1},{2,4},{3}}
                                       {{1,3},{2},{4}}
                                       {{1,4},{2},{3}}
                                       {{1},{2},{3},{4}}
(End)
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 32, 911.
  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.
  • W. Fulton, Young Tableaux, Cambridge, 1997.
  • D. E. Knuth, The Art of Computer Programming, Vol. 3, Section 5.1.4, p. 65.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, p. 6.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 86.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.

Crossrefs

See also A005425 for another version of the switchboard problem.
Equals 2 * A001475(n-1) for n>1.
First column of array A099020.
A069943(n+1)/A069944(n+1) = a(n)/A000142(n) in lowest terms.
Cf. A152736, A128229. - Gary W. Adamson, Dec 12 2008
Diagonal of A182172. - Alois P. Heinz, May 30 2012
Row sums of: A047884, A049403, A096713 (absolute value), A100861, A104556 (absolute value), A111924, A117506 (M_4 numbers), A122848, A238123.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.

Programs

  • Haskell
    a000085 n = a000085_list !! n
      a000085_list = 1 : 1 : zipWith (+)
        (zipWith (*) [1..] a000085_list) (tail a000085_list) -- Reinhard Zumkeller, May 16 2013
    
  • Maple
    A000085 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else procname(n-1)+(n-1)*procname(n-2); fi; end;
    with(combstruct):ZL3:=[S,{S=Set(Cycle(Z,card<3))}, labeled]:seq(count(ZL3,size=n),n=0..25); # Zerinvary Lajos, Sep 24 2007
    with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(2):seq(count(A, size=n), n=0..25); # Zerinvary Lajos, Jun 11 2008
  • Mathematica
    <Roger L. Bagula, Oct 06 2006 *)
    With[{nn=30},CoefficientList[Series[Exp[x+x^2/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2013 *)
    a[ n_] := Sum[(2 k - 1)!! Binomial[ n, 2 k], {k, 0, n/2}]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, HypergeometricU[ -n/2, 1/2, -1/2] / (-1/2)^(n/2)]; (* Michael Somos, Jun 01 2013 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x + x^2 / 2], {x, 0, n}]]; (* Michael Somos, Jun 01 2013 *)
    Table[(I/Sqrt[2])^n HermiteH[n, -I/Sqrt[2]], {n, 0, 100}] (* Emanuele Munarini, Mar 02 2016 *)
    a[n_] := Sum[StirlingS1[n, k]*2^k*BellB[k, 1/2], {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 18 2017, after Emanuele Munarini *)
    RecurrenceTable[{a[n] == a[n-1] + (n-1)*a[n-2], a[0] == 1, a[1] == 1}, a, {n, 0, 20}] (* Joan Ludevid, Jun 17 2022 *)
    sds[{}]:={{}};sds[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sds[Complement[set,s]]]/@Cases[Subsets[set,{1,2}],{i,_}]; Table[Length[sds[Range[n]]],{n,0,10}] (* Gus Wiseman, Jan 11 2021 *)
  • Maxima
    B(n,x):=sum(stirling2(n,k)*x^k,k,0,n);
      a(n):=sum(stirling1(n,k)*2^k*B(k,1/2),k,0,n);
      makelist(a(n),n,0,40); /* Emanuele Munarini, May 16 2014 */
    
  • Maxima
    makelist((%i/sqrt(2))^n*hermite(n,-%i/sqrt(2)),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp( x + x^2 / 2 + x * O(x^n)), n))}; /* Michael Somos, Nov 15 2002 */
    
  • PARI
    N=66; x='x+O('x^N); egf=exp(x+x^2/2); Vec(serlaplace(egf)) \\ Joerg Arndt, Mar 07 2013
    
  • Python
    from math import factorial
    def A000085(n): return sum(factorial(n)//(factorial(n-(k<<1))*factorial(k)*(1<>1)+1)) # Chai Wah Wu, Aug 31 2023
  • Sage
    A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
    [simplify(A000085(n)) for n in range(28)] # Peter Luschny, Aug 21 2014
    
  • Sage
    def a85(n): return sum(factorial(n) / (factorial(n-2*k) * 2**k * factorial(k)) for k in range(1+n//2))
    for n in range(100): print(n, a85(n)) # Manfred Scheucher, Jan 07 2018
    

Formula

D-finite with recurrence a(0) = a(1) = 1, a(n) = a(n-1) + (n-1)*a(n-2) for n>1.
E.g.f.: exp(x+x^2/2).
a(n) = a(n-1) + A013989(n-2) = A013989(n)/(n+1) = 1+A001189(n).
a(n) = Sum_{k=0..floor(n/2)} n!/((n-2*k)!*2^k*k!).
a(m+n) = Sum_{k>=0} k!*binomial(m, k)*binomial(n, k)*a(m-k)*a(n-k). - Philippe Deléham, Mar 05 2004
For n>1, a(n) = 2*(A000900(n) + A000902(floor(n/2))). - Max Alekseyev, Oct 31 2015
The e.g.f. y(x) satisfies y^2 = y''y' - (y')^2.
a(n) ~ c*(n/e)^(n/2)exp(n^(1/2)) where c=2^(-1/2)exp(-1/4). [Chowla]
a(n) = HermiteH(n, 1/(sqrt(2)*i))/(-sqrt(2)*i)^n, where HermiteH are the Hermite polynomials. - Karol A. Penson, May 16 2002
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Jan 12 2006
For asymptotics see the Robinson paper.
a(n) = Sum_{m=0..n} A099174(n,m). - Roger L. Bagula, Oct 06 2006
O.g.f.: A(x) = 1/(1-x-1*x^2/(1-x-2*x^2/(1-x-3*x^2/(1-... -x-n*x^2/(1- ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
From Gary W. Adamson, Dec 29 2008: (Start)
a(n) = (n-1)*a(n-2) + a(n-1); e.g., a(7) = 232 = 6*26 + 76.
Starting with offset 1 = eigensequence of triangle A128229. (End)
a(n) = (1/sqrt(2*Pi))*Integral_{x=-oo..oo} exp(-x^2/2)*(x+1)^n. - Groux Roland, Mar 14 2011
Row sums of |A096713|. a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+2*x)*d/dx. Cf. A047974 and A080599. - Peter Bala, Dec 07 2011
From Sergei N. Gladkovskii, Dec 03 2011 - Oct 28 2013: (Start)
Continued fractions:
E.g.f.: 1+x*(2+x)/(2*G(0)-x*(2+x)) where G(k)=1+x*(x+2)/(2+2*(k+1)/G(k+1)).
G.f.: 1/(U(0) - x) where U(k) = 1 + x*(k+1) - x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 + x*k - x/(1 - x*(k+1)/Q(k+1)).
G.f.: -1/(x*Q(0)) where Q(k) = 1 - 1/x - (k+1)/Q(k+1).
G.f.: T(0)/(1-x) where T(k) = 1 - x^2*(k+1)/( x^2*(k+1) - (1-x)^2/T(k+1)). (End)
a(n) ~ (1/sqrt(2)) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))). - Vaclav Kotesovec, Mar 07 2014
a(n) = Sum_{k=0..n} s(n,k)*(-1)^(n-k)*2^k*B(k,1/2), where the s(n,k) are (signless) Stirling numbers of the first kind, and the B(n,x) = Sum_{k=0..n} S(n,k)*x^k are the Stirling polynomials, where the S(n,k) are the Stirling numbers of the second kind. - Emanuele Munarini, May 16 2014
a(n) = hyper2F0([-n/2,(1-n)/2],[],2). - Peter Luschny, Aug 21 2014
0 = a(n)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Aug 22 2014
From Peter Bala, Oct 06 2021: (Start)
a(n+k) == a(n) (mod k) for all n >= 0 and all positive odd integers k.
Hence for each odd k, the sequence obtained by taking a(n) modulo k is a periodic sequence and the exact period divides k. For example, taking a(n) modulo 7 gives the purely periodic sequence [1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, 1, 1, 2, 4, 3, 5, 6, ...] of period 7. For similar results see A047974 and A115329. (End)

A238802 Number T(n,k) of standard Young tableaux with n cells where k is the length of the maximal consecutive sequence 1,2,...,k in the first column; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 13, 8, 3, 1, 1, 0, 38, 24, 9, 3, 1, 1, 0, 116, 74, 28, 9, 3, 1, 1, 0, 382, 246, 93, 29, 9, 3, 1, 1, 0, 1310, 848, 321, 98, 29, 9, 3, 1, 1, 0, 4748, 3088, 1168, 350, 99, 29, 9, 3, 1, 1, 0, 17848, 11644, 4404, 1302, 356, 99, 29, 9, 3, 1, 1
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Mar 05 2014

Keywords

Comments

T(0,0) = 1 by convention.
Also the number of ballot sequences of length n with exactly k fixed points. The fixed points are in the positions 1,2,...,k.
Row sums give A000085.
Diagonal T(2n,n) gives A238803(n).
Diagonal T(2n+1,n) gives A238803(n+1)-1.
T(n,1) = Sum_{k=2..n} T(n,k) = A000085(n)/2 = A001475(n-1) for n>1.
Columns k=2-8 give: A238977, A238978, A238979, A239116, A239117, A239118, A239119.
Conjecture: Generally, column k is asymptotic to sqrt(2)/(2*(k+1)*(k-1)!) * exp(sqrt(n)-n/2-1/4) * n^(n/2) * (1 + 7/(24*sqrt(n))), holds for all k<=10. - Vaclav Kotesovec, Mar 08 2014

Examples

			The 10 tableaux with n=4 cells sorted by the length of the maximal consecutive sequence 1,2,...,k in the first column are:
:[1 2] [1 2] [1 2 3] [1 2 4] [1 2 3 4]:[1 3] [1 3] [1 3 4]:[1 4]:[1]:
:[3]   [3 4] [4]     [3]              :[2]   [2 4] [2]    :[2]  :[2]:
:[4]                                  :[4]                :[3]  :[3]:
:                                     :                   :     :[4]:
: -----------------1----------------- : --------2-------- : -3- : 4 :
Their corresponding ballot sequences are:
[1, 1, 2, 3]  ->  1 \
[1, 1, 2, 2]  ->  1  \
[1, 1, 1, 2]  ->  1   } -- 5
[1, 1, 2, 1]  ->  1  /
[1, 1, 1, 1]  ->  1 /
[1, 2, 1, 3]  ->  2 \
[1, 2, 1, 2]  ->  2  } --- 3
[1, 2, 1, 1]  ->  2 /
[1, 2, 3, 1]  ->  3 } ---- 1
[1, 2, 3, 4]  ->  4 } ---- 1
Thus row 4 = [0, 5, 3, 1, 1].
Triangle T(n,k) begins:
00:   1;
01:   0,    1;
02:   0,    1,    1;
03:   0,    2,    1,    1;
04:   0,    5,    3,    1,   1;
05:   0,   13,    8,    3,   1,  1;
06:   0,   38,   24,    9,   3,  1,  1;
07:   0,  116,   74,   28,   9,  3,  1,  1;
08:   0,  382,  246,   93,  29,  9,  3,  1,  1;
09:   0, 1310,  848,  321,  98, 29,  9,  3,  1,  1;
10:   0, 4748, 3088, 1168, 350, 99, 29,  9,  3,  1,  1;
		

Programs

  • Maple
    b:= proc(n, l) option remember; `if`(n=0, 1,
           b(n-1, [l[], 1]) +add(`if`(i=1 or l[i-1]>l[i],
           b(n-1, subsop(i=l[i]+1, l)), 0), i=1..nops(l)))
        end:
    T:= (n, k)-> `if`(n=k, 1, `if`(k=0, 0, b(n-k-1, [2, 1$(k-1)]))):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = If[n == 0, 1, b[n-1, Append[l, 1]] + Sum[If[i == 1 || l[[i-1]] > l[[i]], b[n-1, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}]]; T[n_, k_] := If[n == k, 1, If[k == 0, 0, b[n-k-1, Join[{2}, Table[1, {k-1}]]]]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)

A104778 Table of values with shape sequence A000041 related to involutions and multinomials. Also column sums of the Kostka matrices associated with the partitions (in Abramowitz & Stegun ordering).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 1, 2, 3, 5, 10, 1, 2, 3, 5, 7, 13, 26, 1, 2, 3, 4, 5, 8, 11, 14, 20, 38, 76, 1, 2, 3, 4, 5, 8, 10, 13, 14, 23, 32, 42, 60, 116, 232, 1, 2, 3, 4, 5, 5, 8, 11, 14, 17, 14, 24, 30, 40, 56, 43, 73, 103, 136, 196, 382, 764, 1
Offset: 0

Views

Author

Alford Arnold, Mar 24 2005

Keywords

Comments

Row sums give A178718.

Examples

			The 47 multinomials (corresponding to A005651(4)=47) can be distributed as in the following triangular array:
  1
  9 1
  4 6 1
  9 2 3 1
  1 3 2 3 1
divide each term by
  1
  3 1
  2 3 1
  3 2 3 1
  1 3 2 3 1
yielding
  1
  3 1
  2 2 1
  3 1 1 1
  1 1 1 1 1
with column sums 10 5 3 2 1.
Therefore the fourth row of the table is 1 2 3 5 10
The initial rows are:
  1,
  1,
  1, 2,
  1, 2, 4,
  1, 2, 3, 5, 10,
  1, 2, 3, 5, 7, 13, 26,
  1, 2, 3, 4, 5, 8, 11, 14, 20, 38, 76,
  1, 2, 3, 4, 5, 8, 10, 13, 14, 23, 32, 42, 60, 116, 232,
  1, 2, 3, 4, 5, 5, 8, 11, 14, 17, 14, 24, 30, 40, 56, 43, 73, 103, 136, 196, 382, 764,
  ...
		

Crossrefs

Programs

  • Mathematica
    (* for function 'kostka' see A178718 *)
    aspartitions[n_] := Reverse /@ Sort[Sort /@ Partitions[n]];
    asorder[n_] := rankpartition /@ Reverse /@ Sort[Sort /@ Partitions[n]];
    Flatten[Table[Tr/@ Transpose[PadLeft[#,PartitionsP[k]] [[asorder[k]] ]&/@ kostka/@ aspartitions[k]],{k,11}]]

Extensions

Corrected and edited by Wouter Meeussen, Jan 15 2012

A076276 Number of + signs needed to write the partitions of n (A000041) as sums.

Original entry on oeis.org

0, 0, 1, 3, 7, 13, 24, 39, 64, 98, 150, 219, 322, 455, 645, 892, 1232, 1668, 2259, 3008, 4003, 5260, 6897, 8951, 11599, 14893, 19086, 24284, 30827, 38888, 48959, 61293, 76578, 95223, 118152, 145993, 180037, 221175, 271186, 331402, 404208, 491521
Offset: 0

Views

Author

Floor van Lamoen, Oct 04 2002

Keywords

Comments

Also, total number of parts in all partitions of n-1 plus the number of emergent parts of n, if n >= 1. Also, sum of largest parts of all partitions of n-1 plus the number of emergent parts of n, if n >= 1. - Omar E. Pol, Oct 30 2011
Also total number of parts that are not the largest part in all partitions of n. - Omar E. Pol, Apr 30 2012
Empirical: For n > 1, a(n) is the sum of the entries in the second column of the lower-triangular matrix of coefficients giving the expansion of degree-n complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			4=1+3=2+2=1+1+2=1+1+1+1, 7 + signs are needed, so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[n_] := Sum[DivisorSigma[0, k]PartitionsP[n-k], {k, 1, n}]-PartitionsP[n]

Formula

a(n) = (Sum_{k=1..n} tau(k)*numbpart(n-k))-numbpart(n) = A006128(n)-A000041(n), n>0. - Vladeta Jovovic, Oct 06 2002
G.f.: sum(n>=1, (n-1) * x^n / prod(k=1,n, 1-x^k ) ). - Joerg Arndt, Apr 17 2011
a(n) = A006128(n-1) + A182699(n), n >= 1. - Omar E. Pol, Oct 30 2011

Extensions

More terms from Vladeta Jovovic, Robert G. Wilson v, Dean Hickerson and Don Reble, Oct 06 2002

A248475 Number of pairs of partitions of n that are successors in reverse lexicographic order, but incomparable in dominance (natural, majorization) ordering.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 4, 6, 9, 12, 17, 22, 30, 39, 51, 65, 85, 107, 136, 171, 216, 268, 335, 413, 512, 629, 772, 941, 1151, 1396, 1694, 2046, 2471, 2969, 3569, 4271, 5110, 6093, 7258, 8620, 10235, 12113, 14325, 16902, 19925, 23434, 27540, 32296, 37842, 44260, 51715, 60322, 70306, 81805
Offset: 1

Views

Author

Wouter Meeussen, Oct 07 2014

Keywords

Comments

Empirical: a(n) is the number of zeros in the subdiagonal of the lower-triangular matrix of coefficients giving the expansion of degree-n complete homogeneous symmetric functions in the Schur basis of the algebra of symmetric functions. - John M. Campbell, Mar 18 2018

Examples

			The successor pair (3,1,1,1) and (2,2,2) are incomparable in dominance ordering, and so are their transposes (4,1,1) and (3,3) and these are the two only pairs for n=6, hence a(6)=2.
		

References

  • Ian G. Macdonald, Symmetric functions and Hall polynomials, Oxford University Press, 1979, pp. 6-8.

Crossrefs

Programs

  • Mathematica
    Needs["Combinatorica`"];
    dominant[par1_?PartitionQ,par2_?PartitionQ]:= Block[{le=Max[Length[par1],Length[par2]],acc},
    acc=Accumulate[PadRight[par1,le]]-Accumulate[PadRight[par2,le]];Which[Min[acc]===0&&Max[acc]>=0,1,Min[acc]<=0&&Max[acc]===0,-1,True,0]];
    Table[Count[Apply[dominant, Partition[Partitions[n], 2,1], 1],0], {n,40}]

A300931 a(n) is the number of Klein four orbits of permutations generated by the operations of inverse permutation and conjugation by w_0 = [n, n-1, ..., 1].

Original entry on oeis.org

1, 1, 2, 4, 13, 45, 230, 1388, 10558, 92126, 912908, 9998008, 119831996, 1557050972, 21795929320, 326923928048, 5230723155848, 88921965504136, 1600593971537552, 30411277553507360, 608225514852464848, 12772735603832679248, 281000182274281641056
Offset: 0

Views

Author

Sara Billey, Philippe Nadeau, Jordan Weaver, Jesse Rivera, Justin Shyi, Mar 15 2018

Keywords

Examples

			For n=3, the a(3)=4 orbits are {(1,2,3)}, {(1,3,2),(2,1,3)}, {(2,3,1),(3,1,2)}, and {(3,2,1)}.
		

Crossrefs

Cf. A001475.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<6, [1$2, 2, 4, 13, 45][n+1],
          ((15*n^2+11*n-161)*a(n-1)-(19*n^2-100*n+65)*a(n-2)
           -(30*n^3-87*n^2-81*n+266)*a(n-3)+68*(n-2)*(n-3)^2*a(n-4)
           +(n-3)*(n-4)*(15*n^2-23*n-16)*a(n-5)-2*(17*n-33)*(n-3)*
           (n-4)*(n-5)*a(n-6))/(15*n-38))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Mar 30 2018
  • Mathematica
    Table[(n! + (2 Floor[n/2])!! + 2 + 2 Sum[Product[Binomial[n - 2 j, 2], {j, 0, k - 1}]/k!, {k, Floor[n/2]}])/4, {n, 22}] (* Michael De Vlieger, Mar 16 2018 *)
    Table[(n! + (2*Floor[n/2])!!)/4 + I^(1 - n) * 2^((n - 3)/2) * HypergeometricU[(1 - n)/2, 3/2, -1/2], {n, 0, 25}] (* Vaclav Kotesovec, May 19 2020 *)

Formula

a(n) = (n! + (2*floor(n/2))!! + 2 + 2*Sum_{k=1..floor(n/2)} (Product_{j=0..k-1} binomial(n-2j,2))/k!)/4.
For n > 1, a(n) = (n! + (2*floor(n/2))!!)/4 + A001475(n-1). - Vaclav Kotesovec, May 19 2020

Extensions

a(19)-a(22) from Michael De Vlieger, Mar 16 2018
a(0)=1 prepended by Alois P. Heinz, Mar 30 2018
Showing 1-6 of 6 results.