cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 473 results. Next

A006123 Erroneous version of A000085.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 75, 215
Offset: 0

Views

Author

Keywords

Comments

Computation of tree based structure as detailed in Mallows Jun 1991 letter produces A000085. - Sean A. Irvine, Mar 06 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A066223 Bisection of A000085.

Original entry on oeis.org

1, 2, 10, 76, 764, 9496, 140152, 2390480, 46206736, 997313824, 23758664096, 618884638912, 17492190577600, 532985208200576, 17411277367391104, 606917269909048576, 22481059424730751232, 881687990282453393920, 36494410645223834692096, 1589659519990672490875904
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 2001

Keywords

Comments

Number of tableaux on 2n elements. - Roberto E. Martinez II, Jan 09 2002
a(n) = number of ways to connect 2n points labeled 1,2,...,2n in a line with 0 or more arcs such that at most one arc leaves each point. For example, with arcs separated by dashes, a(2)=10 counts {} (no arcs), 12, 13, 14, 23, 24, 34, 12-34, 13-24, 14-23. - David Callan, Sep 18 2007
a(n) = A229223(2n,2) = A229243(2,n). - Alois P. Heinz, Sep 17 2013

References

  • S. Chowla, The asymptotic behavior of solutions of difference equations, in Proceedings of the International Congress of Mathematicians (Cambridge, MA, 1950), Vol. I, 377, Amer. Math. Soc., Providence, RI, 1952.

Crossrefs

Cf. A066224.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n+1,
          (4*n-2)*a(n-1)-2*(n-1)*(2*n-3)*a(n-2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 17 2013
  • Mathematica
    NumberOfTableaux[2n]
    a[n_] := a[n] = If[n<2, n+1, (4*n-2)*a[n-1] - 2*(n-1)*(2*n-3)*a[n-2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 13 2014, after Alois P. Heinz *)
    Table[(-2)^n HypergeometricU[-n, 1/2, -(1/2)], {n, 0, 90}] (* Emanuele Munarini, Aug 31 2017 *)
  • PARI
    a(n)=sum(k=0,n,binomial(2*n,2*k)*prod(i=1,k,2*i-1))
    
  • PARI
    a(n)=if(n<0, 0, n*=2; n!*polcoeff(exp(x+x^2/2+x*O(x^n)),n))

Formula

a(n) = sum(k=0, n, C(2n, 2*k)*(2k-1)!!). - Benoit Cloitre, May 01 2003
a(n) = n!*2^n*LaguerreL(n, -1/2, -1/2). - Vladeta Jovovic, May 10 2003
E.g.f.: cosh(x)*exp(x^2/2) (with interpolated zeros) - Paul Barry, May 26 2003
E.g.f.: exp(x/(1-2*x))/sqrt(1-2*x). - Paul Barry, Apr 12 2010
a(n) = (1/sqrt(2*pi))*Int((1+x)^(2*n)*exp(-x^2/2),x,-infinity,infinity). - Paul Barry, Apr 21 2010
Conjecture: a(n) +2*(-2*n+1)*a(n-1) +2*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
Remark: the above conjectured recurrence is true and can be obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) ~ n^n*2^(n-1/2)*exp(-n+sqrt(2*n)-1/4) * (1 + 7/(24*sqrt(2*n))). - Vaclav Kotesovec, Jun 22 2013

Extensions

More terms from Roberto E. Martinez II, Jan 09 2002

A111062 Triangle T(n, k) = binomial(n, k) * A000085(n-k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 10, 16, 12, 4, 1, 26, 50, 40, 20, 5, 1, 76, 156, 150, 80, 30, 6, 1, 232, 532, 546, 350, 140, 42, 7, 1, 764, 1856, 2128, 1456, 700, 224, 56, 8, 1, 2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1, 9496, 26200, 34380, 27840, 15960, 6552, 2100, 480, 90, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 07 2005

Keywords

Comments

Triangle related to A000085.
Riordan array [exp(x(2+x)/2),x]. - Paul Barry, Nov 05 2008
Array is exp(S+S^2/2) where S is A132440 the infinitesimal generator for Pascal's triangle. T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then partitioning the remaining n-k elements into sets each of size 1 or 2. Cf. A122832. - Peter Bala, May 14 2012
T(n,k) is equal to the number of R-classes (equivalently, L-classes) in the D-class consisting of all rank k elements of the partial Brauer monoid of degree n. - James East, Aug 17 2015

Examples

			Rows begin:
     1;
     1,    1;
     2,    2,    1;
     4,    6,    3,    1;
    10,   16,   12,    4,    1;
    26,   50,   40,   20,    5,    1;
    76,  156,  150,   80,   30,    6,   1;
   232,  532,  546,  350,  140,   42,   7,  1;
   764, 1856, 2128, 1456,  700,  224,  56,  8, 1;
  2620, 6876, 8352, 6384, 3276, 1260, 336, 72, 9, 1;
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is:
  1, 1,
  1, 1, 1,
  0, 2, 1, 1,
  0, 0, 3, 1, 1,
  0, 0, 0, 4, 1, 1,
  0, 0, 0, 0, 5, 1, 1,
  0, 0, 0, 0, 0, 6, 1, 1,
  0, 0, 0, 0, 0, 0, 7, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 8, 1, 1 (End)
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator has integer entries and begins
  0
  1  0
  1  2  0
  0  3  3  0
  0  0  6  4  0
  0  0  0 10  5  0
  0  0  0  0 15  6  0
  ...
and is the generalized exponential Riordan array [x + x^2/2!,x].(End)
		

Crossrefs

Cf. A099174, A133314, A159834 (inverse matrix).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(Factorial(n)/Factorial(k))*Sum([0..n-k],j->Binomial(j,n-k-j)/(Factorial(j)*2^(n-k-j)))))); # Muniru A Asiru, Jun 29 2018
  • Mathematica
    a[n_] := Sum[(2 k - 1)!! Binomial[n, 2 k], {k, 0, n/2}]; Table[Binomial[n, k] a[n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 20 2015, after Michael Somos at A000085 *)
  • Sage
    def A111062_triangle(dim):
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+(k+1)*M[n-1,k+1]
        return M
    A111062_triangle(9) # Peter Luschny, Sep 19 2012
    

Formula

Sum_{k>=0} T(m, k)*T(n, k)*k! = T(m+n, 0) = A000085(m+n).
Sum_{k=0..n} T(n, k) = A005425(n).
Apparently satisfies T(n,m) = T(n-1,m-1) + T(n-1,m) + (m+1) * T(n-1,m+1). - Franklin T. Adams-Watters, Dec 22 2005 [corrected by Werner Schulte, Feb 12 2025]
T(n,k) = (n!/k!)*Sum_{j=0..n-k} C(j,n-k-j)/(j!*2^(n-k-j)). - Paul Barry, Nov 05 2008
G.f.: 1/(1-xy-x-x^2/(1-xy-x-2x^2/(1-xy-x-3x^2/(1-xy-x-4x^2/(1-... (continued fraction). - Paul Barry, Apr 23 2009
T(n,k) = C(n,k)*Sum_{j=0..n-k} C(n-k,j)*(n-k-j-1)!! where m!!=0 if m is even. - James East, Aug 17 2015
From Tom Copeland, Jun 26 2018: (Start)
E.g.f.: exp[t*p.(x)] = exp[t + t^2/2] e^(x*t).
These polynomials (p.(x))^n = p_n(x) are an Appell sequence with the lowering and raising operators L = D and R = x + 1 + D, with D = d/dx, such that L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x), so the formalism of A133314 applies here, giving recursion relations.
The transpose of the production matrix gives a matrix representation of the raising operator R.
exp(D + D^2/2) x^n= e^(D^2/2) (1+x)^n = h_n(1+x) = p_n(x) = (a. + x)^n, with (a.)^n = a_n = A000085(n) and h_n(x) the modified Hermite polynomials of A099174.
A159834 with the e.g.f. exp[-(t + t^2/2)] e^(x*t) gives the matrix inverse for this entry with the umbral inverse polynomials q_n(x), an Appell sequence with the raising operator x - 1 - D, such that umbrally composed q_n(p.(x)) = x^n = p_n(q.(x)). (End)

Extensions

Corrected by Franklin T. Adams-Watters, Dec 22 2005
10th row added by James East, Aug 17 2015

A002771 Number of terms in a skew determinant: a(n) = (A000085(n) + A081919(n))/2.

Original entry on oeis.org

1, 2, 4, 13, 41, 226, 1072, 9374, 60958, 723916, 5892536, 86402812, 837641884, 14512333928, 162925851376, 3252104882056, 41477207604872, 937014810365584, 13380460644770848, 337457467862898896, 5333575373478669136, 148532521250931168352
Offset: 1

Views

Author

Keywords

References

  • T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, 2*k) * doublefactorial(2*k-1) * (1+doublefactorial(2*k-1))/2, k=0..floor(n/2)), n=1..40); # Sean A. Irvine, Aug 18 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<5, [1$2, 2, 4, 13][n+1],
         ((2*n-5) *a(n-1) +(n-1)*(n^2-4*n+1) *a(n-2)
          -(2*n-5)*(n-1)*(n-2) *a(n-3))/(n-4)
          +(n-1)*(n-2)*(n-3) *(a(n-5)-a(n-4)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    a[n_] := Sum[Binomial[n, 2*k] * (2*k-1)!! * (1 + (2*k-1)!!) / 2, {k, 0, n/2}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Sean A. Irvine *)
  • Sage
    def A002771(n):
        A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
        A081919 = lambda n: hypergeometric([1/2,-n/2,(1-n)/2], [], 4)
        return ((A000085(n) + A081919(n))/2).n()
    [round(A002771(n)) for n in (1..22)]  # Peter Luschny, Aug 21 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * (2*k-1)!! * (1 + (2*k-1)!!) / 2. - Sean A. Irvine, Aug 18 2014
(-n+4)*a(n) +(2*n-5)*a(n-1) +(n-1)*(n^2-4*n+1)*a(n-2) -(2*n-5)*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 19 2014
a(n) = (hyper2F0([-n/2,(1-n)/2],[],2)+hyper3F0([1/2,-n/2,(1-n)/2],[],4))/2. - Peter Luschny, Aug 21 2014
a(n) ~ ((-1)^n*exp(-1) + exp(1)) * n^n / (2*exp(n)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Sean A. Irvine, Aug 18 2014
Expanded definition from Peter Luschny, Aug 21 2014

A316330 a(n) = A000085(4*n)/2^n.

Original entry on oeis.org

1, 5, 191, 17519, 2887921, 742458253, 273315477775, 136025604432743, 87816638377854497, 71278145791452802133, 70978809757898186241439, 85023410230409691052228255, 120545000629512292505954394769, 199558149588334620585072909701981, 381323441275017330119775857868585839
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2018, following a suggestion from Doron Zeilberger

Keywords

Crossrefs

A316331 a(n) = A000085(4*n+1)/2^n.

Original entry on oeis.org

1, 13, 655, 71063, 13237457, 3748521653, 1495006933759, 796798642614895, 546144645571635169, 467512355698028529821, 488384275088035513080239, 611057820865315450415912327, 901643505614430586911510015025, 1548711768835068239482321088560837
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2018, following a suggestion from Doron Zeilberger

Keywords

Crossrefs

A316332 a(n) = A000085(4*n+2)/2^(n+1).

Original entry on oeis.org

1, 19, 1187, 149405, 31166057, 9670072483, 4163946939067, 2370770585582221, 1722046856020416785, 1552401874990891104371, 1699257737580930574489619, 2218555640616875773883091901, 3404174268230266459851637679353, 6062646848508401565245592651382915, 12398960005973049406349011215379703723
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2018, following a suggestion from Doron Zeilberger

Keywords

Crossrefs

A316333 a(n) = A000085(4*n+3)/2^(n+2).

Original entry on oeis.org

1, 29, 2231, 323423, 75151585, 25451905333, 11799518538967, 7161375112402823, 5503252915369107329, 5217568316626716585485, 5977663757214838174587319, 8136442760259565566724537711, 12972630954295515566319694027489, 23938932303527622015634131021262757
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2018, following a suggestion from Doron Zeilberger

Keywords

Crossrefs

A094070 a(n) = A000085(n) * A000110(n).

Original entry on oeis.org

1, 4, 20, 150, 1352, 15428, 203464, 3162960, 55405140, 1101298600, 24222234720, 590544046744, 15715973012248, 456341011254560, 14312979247985120, 484253161428902192, 17550722413456774848, 680244627812139042016, 28053748582811428182080, 1228896901162555453603712
Offset: 0

Views

Author

N. J. A. Sloane, May 01 2004

Keywords

Comments

Coefficients arising in combinatorial field theory.

References

  • P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
  • P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.

Crossrefs

Programs

  • Maple
    with(combinat): with(orthopoly): seq((I/sqrt(2))^(n+1)*H(n+1,-I/sqrt(2))*bell(n+1),n=0..17); # Emeric Deutsch, Nov 22 2004
  • Mathematica
    a[n_] := Sum[StirlingS1[n+1, k] 2^k BellB[k, 1/2], {k, 0, n+1}] BellB[n+1];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 07 2018 *)

Formula

a(n) = (i/sqrt(2))^(n+1)*H(n+1, -i/sqrt(2))*Bell(n+1), where i=sqrt(-1), H(n, x) are the Hermite polynomials and Bell(n) are the Bell numbers. - Emeric Deutsch, Nov 22 2004

Extensions

More terms from Ralf Stephan, Oct 14 2004

A050397 Reversion of sequence of involutions (A000085).

Original entry on oeis.org

1, -2, 4, -10, 30, -104, 392, -1568, 6520, -27976, 122944, -551680, 2518912, -11684000, 54957216, -261897024, 1263216192, -6164172608, 30416619200, -151750104800, 765364073120, -3902783995520, 20123276097920
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Crossrefs

Programs

  • Maple
    # Using function CompInv from A357588.
    CompInv(23, n -> simplify(hypergeom([-n/2, (1-n)/2], [], 2))); # Peter Luschny, Oct 05 2022
  • PARI
    seq(n)=Vec(serreverse(serlaplace(-1 + exp(x+x^2/2 + O(x*x^n))))) \\ Andrew Howroyd, May 06 2023
Showing 1-10 of 473 results. Next