cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002772 Number of terms in a bordered skew determinant.

Original entry on oeis.org

2, 6, 22, 101, 546, 3502, 25586, 214062, 1987516, 20599076, 232482372, 2876191276, 38228128472, 549706132536, 8408517839416, 137788390312712, 2383879842920976, 43846851982943152, 846470648320690736, 17266870434276713616, 367937854493289655072
Offset: 2

Views

Author

Keywords

References

  • T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
  • T. Muir, The Theory of Determinants in the Historical Order of Development. 4 vols., Macmillan, NY, 1906-1923, Vol. 4, p. 278.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} A002771(k) / k! with the understanding that A002771(0) = 1. - Sean A. Irvine, Aug 18 2014

Extensions

More terms from Sean A. Irvine, Aug 18 2014

A243107 Number of terms in a bordered skew determinant.

Original entry on oeis.org

1, 1, 2, 4, 13, 41, 226, 1072, 9059, 58123, 657766, 5268836, 73980787, 707506879, 11823958238, 131277234376, 2542107619081, 32122718085497, 706963537444114, 10015472595953908, 246853433179370621, 3874536631479770761, 105709617658879558402
Offset: 0

Views

Author

Sean A. Irvine, Aug 19 2014

Keywords

Comments

Possibly a different attempt to count the same bordered skew determinants as in A002772.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],
          (2*a(n-1)+2*(n-1)^2*a(n-2)-2*(n-1)*(n-2)*a(n-3)
           -(n-1)*(n-2)*(n-3)*a(n-4))/2)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    b[n_] := Gamma[n+1/2] HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi];
    a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];
    a /@ Range[0, 30]
    (* Second program: *)
    a[n_] := a[n] = If[n < 4, {1, 1, 2, 4}[[n+1]], (2a[n-1] + 2(n-1)^2 a[n-2] - 2(n-1)(n-2)a[n-3] - (n-1)(n-2)(n-3) a[n-4])/2];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x+x^2/4) / (1-x^2)^(1/4))) \\ Joerg Arndt, Aug 20 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, n - 2*k) * A002370(k).
E.g.f.: exp(x+x^2/4) / (1-x^2)^(1/4).
a(n) ~ n! * GAMMA(3/4) * (exp(5/4) + (-1)^n * exp(-3/4)) / (Pi * 2^(3/4)* n^(3/4)). - Vaclav Kotesovec, Aug 20 2014

Extensions

a(0)=1 prepended by Joerg Arndt, Aug 24 2014

A246257 Triangular array read by rows: T(n, k) = S(n, [n/2]-k) and S(n,k) = C(n, 2*k)*(2*k-1)!!*((2*k-1)!! + 1)/2, n>=0, 0<=k<=[n/2].

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 6, 6, 1, 30, 10, 1, 120, 90, 15, 1, 840, 210, 21, 1, 5565, 3360, 420, 28, 1, 50085, 10080, 756, 36, 1, 446985, 250425, 25200, 1260, 45, 1, 4916835, 918225, 55440, 1980, 55, 1, 54033210, 29501010, 2754675, 110880, 2970, 66, 1
Offset: 0

Views

Author

Peter Luschny, Aug 21 2014

Keywords

Examples

			Triangle starts:
[ 0] 1,
[ 1] 1,
[ 2] 1, 1,
[ 3] 3, 1,
[ 4] 6, 6, 1,
[ 5] 30, 10, 1,
[ 6] 120, 90, 15, 1,
[ 7] 840, 210, 21, 1,
[ 8] 5565, 3360, 420, 28, 1,
[ 9] 50085, 10080, 756, 36, 1,
[10] 446985, 250425, 25200, 1260, 45, 1.
		

Crossrefs

Cf. A002771 (row sums), A246256, A096713.

Programs

  • Maple
    T := proc(n, k) local j; j := iquo(n,2) - k;
    (n!/(j!*(n-2*j)!))*(2^(-j-1)+GAMMA(j+1/2)/sqrt(4*Pi)) end:
    seq(print(seq(T(n,k), k=0..iquo(n,2))), n=0..10);
  • Mathematica
    row[n_] := FunctionExpand[HypergeometricPFQ[{-n/2, (1-n)/2}, {}, 2z] + HypergeometricPFQ[{1/2, -n/2, (1-n)/2}, {}, 4z]]/2 // CoefficientList[#, z]& // Reverse;
    Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    from sage.functions.hypergeometric import closed_form
    def A246257_row(n):
        R. = ZZ[]
        h = hypergeometric([-n/2,(1-n)/2], [], 2*z)
        g = hypergeometric([1/2,-n/2,(1-n)/2], [], 4*z)
        T = R(((closed_form(h)+closed_form(g))/2)).coefficients()
        return T[::-1]
    for n in range(13): A246257_row(n)

Formula

T(n, k) = (n!/(j!*(n-2*j)!))*(2^(-j-1)+Gamma(j+1/2)/sqrt(4*Pi)) where j = floor(n/2) - k.
Showing 1-3 of 3 results.