cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002771 Number of terms in a skew determinant: a(n) = (A000085(n) + A081919(n))/2.

Original entry on oeis.org

1, 2, 4, 13, 41, 226, 1072, 9374, 60958, 723916, 5892536, 86402812, 837641884, 14512333928, 162925851376, 3252104882056, 41477207604872, 937014810365584, 13380460644770848, 337457467862898896, 5333575373478669136, 148532521250931168352
Offset: 1

Views

Author

Keywords

References

  • T. Muir, The expression of any bordered skew determinant as a sum of products of Pfaffians, Proc. Roy. Soc. Edinburgh, 21 (1896), 342-359.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, 2*k) * doublefactorial(2*k-1) * (1+doublefactorial(2*k-1))/2, k=0..floor(n/2)), n=1..40); # Sean A. Irvine, Aug 18 2014
    # second Maple program:
    a:= proc(n) a(n):= `if`(n<5, [1$2, 2, 4, 13][n+1],
         ((2*n-5) *a(n-1) +(n-1)*(n^2-4*n+1) *a(n-2)
          -(2*n-5)*(n-1)*(n-2) *a(n-3))/(n-4)
          +(n-1)*(n-2)*(n-3) *(a(n-5)-a(n-4)))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    a[n_] := Sum[Binomial[n, 2*k] * (2*k-1)!! * (1 + (2*k-1)!!) / 2, {k, 0, n/2}]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 26 2015, after Sean A. Irvine *)
  • Sage
    def A002771(n):
        A000085 = lambda n: hypergeometric([-n/2,(1-n)/2], [], 2)
        A081919 = lambda n: hypergeometric([1/2,-n/2,(1-n)/2], [], 4)
        return ((A000085(n) + A081919(n))/2).n()
    [round(A002771(n)) for n in (1..22)]  # Peter Luschny, Aug 21 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * (2*k-1)!! * (1 + (2*k-1)!!) / 2. - Sean A. Irvine, Aug 18 2014
(-n+4)*a(n) +(2*n-5)*a(n-1) +(n-1)*(n^2-4*n+1)*a(n-2) -(2*n-5)*(n-1)*(n-2)*a(n-3) -(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) +(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 19 2014
a(n) = (hyper2F0([-n/2,(1-n)/2],[],2)+hyper3F0([1/2,-n/2,(1-n)/2],[],4))/2. - Peter Luschny, Aug 21 2014
a(n) ~ ((-1)^n*exp(-1) + exp(1)) * n^n / (2*exp(n)). - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms from Sean A. Irvine, Aug 18 2014
Expanded definition from Peter Luschny, Aug 21 2014

A243107 Number of terms in a bordered skew determinant.

Original entry on oeis.org

1, 1, 2, 4, 13, 41, 226, 1072, 9059, 58123, 657766, 5268836, 73980787, 707506879, 11823958238, 131277234376, 2542107619081, 32122718085497, 706963537444114, 10015472595953908, 246853433179370621, 3874536631479770761, 105709617658879558402
Offset: 0

Views

Author

Sean A. Irvine, Aug 19 2014

Keywords

Comments

Possibly a different attempt to count the same bordered skew determinants as in A002772.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1$2, 2, 4][n+1],
          (2*a(n-1)+2*(n-1)^2*a(n-2)-2*(n-1)*(n-2)*a(n-3)
           -(n-1)*(n-2)*(n-3)*a(n-4))/2)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 19 2014
  • Mathematica
    b[n_] := Gamma[n+1/2] HypergeometricPFQ[{1/4, -n}, {}, -4]/Sqrt[Pi];
    a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];
    a /@ Range[0, 30]
    (* Second program: *)
    a[n_] := a[n] = If[n < 4, {1, 1, 2, 4}[[n+1]], (2a[n-1] + 2(n-1)^2 a[n-2] - 2(n-1)(n-2)a[n-3] - (n-1)(n-2)(n-3) a[n-4])/2];
    a /@ Range[0, 30] (* Jean-François Alcover, Nov 13 2020, after Alois P. Heinz *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x+x^2/4) / (1-x^2)^(1/4))) \\ Joerg Arndt, Aug 20 2014

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n, n - 2*k) * A002370(k).
E.g.f.: exp(x+x^2/4) / (1-x^2)^(1/4).
a(n) ~ n! * GAMMA(3/4) * (exp(5/4) + (-1)^n * exp(-3/4)) / (Pi * 2^(3/4)* n^(3/4)). - Vaclav Kotesovec, Aug 20 2014

Extensions

a(0)=1 prepended by Joerg Arndt, Aug 24 2014
Showing 1-2 of 2 results.