cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248517 Number of odd divisors > 1 in the numbers 1 through n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 4, 6, 7, 8, 9, 10, 11, 14, 14, 15, 17, 18, 19, 22, 23, 24, 25, 27, 28, 31, 32, 33, 36, 37, 37, 40, 41, 44, 46, 47, 48, 51, 52, 53, 56, 57, 58, 63, 64, 65, 66, 68, 70, 73, 74, 75, 78, 81, 82, 85, 86, 87, 90, 91, 92, 97, 97, 100, 103, 104, 105, 108, 111
Offset: 0

Views

Author

R. J. Mathar, Jun 18 2015

Keywords

Comments

Number of partitions of n into 3 parts such that the smallest part divides the "middle" part. - Wesley Ivan Hurt, Oct 21 2021

Crossrefs

Programs

  • Maple
    A248517 := proc(n)
        add(A069283(j),j=1..n) ;
    end proc:
  • Mathematica
    Table[Sum[Floor[Floor[i/2]/(n - i)], {i, n - 1}], {n, 0, 100}] (* Wesley Ivan Hurt, Jan 30 2016 *)
    Join[{0},Accumulate[Table[Count[Divisors[n],?OddQ]-1,{n,80}]]] (* _Harvey P. Dale, Jan 06 2019 *)
    Join[{0}, Accumulate[Table[DivisorSigma[0, n/2^IntegerExponent[n, 2]] - 1, {n, 1, 100}]]] (* Amiram Eldar, Jul 10 2022 *)
  • PARI
    a(n)=my(n2=n\2); sum(k=1, sqrtint(n), n\k)*2-sqrtint(n)^2-sum(k=1, sqrtint(n2), n2\k)*2+sqrtint(n2)^2-n \\ Charles R Greathouse IV, Jun 18 2015
    
  • Python
    from math import isqrt
    def A248517(n): return ((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)+(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1)-n # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{j=1..n} A069283(j).
a(n) = A060831(n) - n.
a(n) = A006218(n) - A006218(floor(n/2)) - n. - Charles R Greathouse IV, Jun 18 2015
a(n) = Sum_{i=1..n-1} floor(floor(i/2)/(n-i)). - Wesley Ivan Hurt, Jan 30 2016