A248559 Least k such that log(2) - sum{1/(h*2^h), h = 1..k} < 1/3^n.
1, 2, 3, 4, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 88, 89, 91, 92, 94, 95, 97, 98
Offset: 1
Examples
Let s(n) = log(2) - sum{1/(h*2^h), h = 1..n}. Approximations follow: n ... s(n) ........ 1/3^n 1 ... 0.193147 .... 0.33333 2 ... 0.0681472 ... 0.11111 3 ... 0.0264805 ... 0.037037 4 ... 0.0108555 ... 0.0123457 5 ... 0.0046066 ... 0.004115 6 ... 0.0020013 ... 0.00137174 a(5) = 6 because s(6) < 1/3^5 < s(5).
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 200; p[k_] := p[k] = Sum[1/(h*2^h), {h, 1, k}] N[Table[Log[2] - p[n], {n, 1, z/5}]] f[n_] := f[n] = Select[Range[z], Log[2] - p[#] < 1/3^n &, 1] u = Flatten[Table[f[n], {n, 1, z}]] (* A248559 *) Flatten[Position[Differences[u], 1]] (* A248560 *) Flatten[Position[Differences[u], 2]] (* A248561 *)
Comments