A248563 Numbers k such that A248562(k+1) = A248562(k) + 1.
1, 2, 4, 6, 8, 10, 12, 15, 17, 19, 22, 24, 27, 29, 32, 34, 37, 39, 42, 44, 47, 49, 52, 55, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 110, 112, 115, 118, 120, 123, 126, 128, 131, 134, 136, 139, 142, 144, 147, 150, 152
Offset: 1
Examples
(A248562(k+1) - A248562(k)) = (1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2,...), so that A248563 = (1, 2, 4, 6, 8, 10, 12, 15, 17, ..) and A248564 = (3, 5, 7, 9, 11, 13, 14, 16, ...).
Links
- Clark Kimberling, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
z = 300; p[k_] := p[k] = Sum[1/(h*3^h), {h, 1, k}]; N[Table[Log[3/2] - p[n], {n, 1, z/5}]] f[n_] := f[n] = Select[Range[z], Log[3/2] - p[#] < 1/6^n &, 1]; u = Flatten[Table[f[n], {n, 1, z}]] (* A248562 *) Flatten[Position[Differences[u], 1]] (* A248563 *) Flatten[Position[Differences[u], 2]] (* A248564 *)