A248565 Least k such that log(4/3) - sum{1/(h*4^h), h = 1..k} < 1/8^n.
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95
Offset: 1
Examples
Let s(n) = log(4/3) - sum{1/(h*4^h), h = 1..n}. Approximations follow: n ... s(n) ........ 1/8^n 1 ... 0.037682 ... 0.125 2 ... 0.006432 ... 0.015625 3 ... 0.001223 ... 0.001953 4 ... 0.000247 ... 0.000244 5 ... 0.000051 ... 0.000030 a(4) = 5 because s(5) < 1/8^4 < s(4).
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 15.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 2500; p[k_] := p[k] = Sum[1/(h*4^h), {h, 1, k}]; N[Table[p[k], {k, 1, z/5}], 12]; N[Table[Log[4/3] - p[n], {n, 1, z/5}]]; f[n_] := f[n] = Select[Range[z], Log[4/3] - p[#] < 1/8^n &, 1]; u = Flatten[Table[f[n], {n, 1, z}]] ; (* A248565 *) Flatten[Position[Differences[u], 1]]; (* A248566 *) Flatten[Position[Differences[u], 2]]; (* A248567 *)
Comments