A248598 a(n) = (2*n+23)*n*(n-1), a coefficient appearing in the formula a(n)*Pi/324+n+1 giving the average number of regions into which n random planes divide the cube.
0, 0, 54, 174, 372, 660, 1050, 1554, 2184, 2952, 3870, 4950, 6204, 7644, 9282, 11130, 13200, 15504, 18054, 20862, 23940, 27300, 30954, 34914, 39192, 43800, 48750, 54054, 59724, 65772, 72210, 79050, 86304, 93984, 102102, 110670, 119700
Offset: 0
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1 Geometric probability constants, p. 482.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Eric Weisstein's MathWorld, Square Division by Lines
- Eric Weisstein's MathWorld, Cube Division by Planes
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Mathematica
a[n_] := (2*n+23)*n*(n-1); Table[a[n], {n, 0, 40}] LinearRecurrence[{4,-6,4,-1},{0,0,54,174},50] (* Harvey P. Dale, Mar 17 2022 *)
-
PARI
concat([0,0], Vec(-6*x^2*(7*x-9)/(x-1)^4 + O(x^100))) \\ Colin Barker, Oct 09 2014
Formula
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Colin Barker, Oct 09 2014
G.f.: -6*x^2*(7*x-9) / (x-1)^4. - Colin Barker, Oct 09 2014
Comments