cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248600 G.f.: Sum_{n>=0} R_n(x+x*y) * x^(2*n)*y^n / (1-x-x*y)^(4*n+1) = Sum_{n>=0} Sum_{k=0..n} C(n,k)^4 * x^n*y^k, where R_n(x+x*y) equals the n-th row polynomial R_n(z) = Sum_{k=0..2*n} T(n,k)*z^k at z = x+x*y.

Original entry on oeis.org

1, 14, 8, 2, 786, 1056, 576, 96, 6, 61340, 131760, 117900, 48320, 9540, 720, 20, 5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70, 549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252, 57440496036
Offset: 0

Views

Author

Paul D. Hanna, Oct 11 2014

Keywords

Examples

			Triangle begins:
[1],
[14, 8, 2],
[786, 1056, 576, 96, 6],
[61340, 131760, 117900, 48320, 9540, 720, 20],
[5562130, 16481920, 20917120, 13847680, 5118400, 1025920, 105280, 4480, 70],
[549676764, 2079579600, 3444581700, 3165926400, 1755532800, 598123008, 123656400, 14716800, 926100, 25200, 252],
[57440496036, 264565490112, 542687590368, 640299696960, 477284304420, 233110386432, 75243589344, 15835792896, 2103157980, 165802560, 7051968, 133056, 924],
[6242164112184, 33895475918304, 83073660613944, 119912994225024, 112698387745944, 72172565713248, 32111980788888, 9951304416768, 2124873478728, 305035899168, 28270554312, 1584815232, 48600552, 672672, 3432],
[698300344311570, 4368053451041280, 12465205610457600, 21305587665922560, 24216302627637120, 19255941998092800, 10989839486545920, 4550117424652800, 1366687981264320, 295074717949440, 44954858108160, 4691645038080, 320878958400, 13445752320, 311351040, 3294720, 12870], ...
where this triangle forms the coefficients in the series
B(x,y) = 1/(1-x-x*y) +
(14 + 8*(x+x*y) + 2*(x+x*y)^2) * x^2*y/(1-x-x*y)^5 +
(786 + 1056*(x+x*y) + 576*(x+x*y)^2 + 96*(x+x*y)^3 + 6*(x+x*y)^4) * x^4*y^2/(1-x-x*y)^9 +
(61340 + 131760*(x+x*y) + 117900*(x+x*y)^2 + 48320*(x+x*y)^3 + 9540*(x+x*y)^4 + 720*(x+x*y)^5 + 20*(x+x*y)^6) * x^6*y^3/(1-x-x*y)^13 +...
such that the sum may be expressed using binomial coefficients C(n,k)^4 like so:
B(x,y) =  1 +
x*(1 + y) +
x^2*(1 + 2^4*y + y^2) +
x^3*(1 + 3^4*y + 3^4*y^2 + y^3) +
x^4*(1 + 4^4*y + 6^4*y^2 + 4^4*y^3 + y^4) +
x^5*(1 + 5^4*y + 10^4*y^2 + 10^4*y^3 + 5^4*y^4 + y^5) +
x^6*(1 + 6^4*y + 15^4*y^2 + 20^4*y^3 + 15^4*y^4 + 6^4*y^5 + y^6) +...
The central terms of the rows begin:
[1, 8, 576, 48320, 5118400, 598123008, 75243589344, 9951304416768, 1366687981264320, ...].
		

Crossrefs

Formula

Leftmost border equals A050983, de Bruijn's S(4,n):
T(n,0) = Sum_{k=0..2*n} (-1)^(n+k) * C(2*n,k)^4.
Rightmost border equals A000984, the central binomial coefficients:
T(n,2*n) = Sum_{k=0..2*n} (-1)^(n+k)* C(2*n,k)^2 = (2*n)!/(n!)^2.
Row sums equal A008977(n) = (4*n)!/(n!)^4.
Sum_{k=0..n} (-1)^k * T(n,k) = A002897(n) = C(2*n,n)^3.