A248664 Triangular array of coefficients of polynomials p(n,k) defined in Comments.
1, 2, 2, 5, 12, 9, 16, 68, 112, 64, 65, 420, 1125, 1375, 625, 326, 2910, 11124, 21600, 20736, 7776, 1957, 22652, 114611, 311787, 470596, 369754, 117649, 13700, 196872, 1254976, 4455424, 9342976, 11468800, 7602176, 2097152, 109601, 1895148, 14699961, 65045025
Offset: 1
Examples
The first six polynomials: p(1,x) = 1 p(2,x) = 2 (1 + x) p(3,x) = 5 + 12 x + 9x^2 p(4,x) = 4 (4 + 17 x + 28 x^2 + 16 x^3) p(5,x) = 5 (13 + 84 x + 225 x^2 + 275 x^3 + 125 x^4) p(6,x) = 2 (163 + 1455 x + 5562 x^2 + 10800 x^3 + 10368 x^4 + 3888 x^5) First six rows of the triangle: 1 2 2 5 12 9 16 68 112 64 65 420 1125 1375 625 326 2910 11124 21600 20736 7776
Links
- Clark Kimberling, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] c[n_] := c[n] = CoefficientList[p[x, n], x]; TableForm[Table[c[n], {n, 1, 10}]] (* A248664 array *) Flatten[Table[c[n], {n, 1, 10}]] (* A248664 sequence *) u = Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *) Flatten[Position[u, 1]] (* A248667 *) Table[Apply[Plus, c[n]], {n, 1, 60}] (* A248668 *) Table[p[x, n] /. x -> -1, {n, 1, 30}] (* A153229 signed *)
Comments