cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248665 Triangular array of coefficients of polynomials p(n,x) defined in Comments; these are the polynomials defined at A248664, but here the coefficients are written in the order of decreasing powers of x.

Original entry on oeis.org

1, 2, 2, 9, 12, 5, 64, 112, 68, 16, 625, 1375, 1125, 420, 65, 7776, 20736, 21600, 11124, 2910, 326, 117649, 369754, 470596, 311787, 114611, 22652, 1957, 2097152, 7602176, 11468800, 9342976, 4455424, 1254976, 196872, 13700, 43046721, 176969853, 309298662
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1).
These polynomials occur in connection with factorials of numbers of the form [n/k] = floor(n/k); e.g., Sum_{n >= 0} ([n/k]!^k)/n! = Sum_{n >= 0} (n!^k)*p(k,n)/(k*n + k - 1)!.

Examples

			The first six polynomials:
p(1,x) = 1
p(2,x) = 2 (x + 1)
p(3,x) = 9x^2 + 12 x +  5
p(4,x) = 4 (16 x^3 + 28 x^2 + 17 x + 4)
p(5,x) = 5 (125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13)
p(6,x) = 2 (3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163)
First six rows of the triangle:
1
2     2
9     12     5
64    112    68     16
625   1375   1125   420    65
7776  20736  21600  11124  2910   326
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}];
    p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[Factor[p[x, n]], {n, 1, 6}]]
    c[n_] := c[n] = Reverse[CoefficientList[p[x, n], x]];
    TableForm[Table[c[n], {n, 1, 10}]] (* A248665 array *)
    Flatten[Table[c[n], {n, 1, 10}]]   (* A248665 sequence *)
    u = Table[Apply[GCD, c[n]], {n, 1, 60}] (*A248666*)
    Flatten[Position[u, 1]]  (*A248667*)
    Table[Apply[Plus, c[n]], {n, 1, 60}] (*A248668*)