A248665 Triangular array of coefficients of polynomials p(n,x) defined in Comments; these are the polynomials defined at A248664, but here the coefficients are written in the order of decreasing powers of x.
1, 2, 2, 9, 12, 5, 64, 112, 68, 16, 625, 1375, 1125, 420, 65, 7776, 20736, 21600, 11124, 2910, 326, 117649, 369754, 470596, 311787, 114611, 22652, 1957, 2097152, 7602176, 11468800, 9342976, 4455424, 1254976, 196872, 13700, 43046721, 176969853, 309298662
Offset: 1
Examples
The first six polynomials: p(1,x) = 1 p(2,x) = 2 (x + 1) p(3,x) = 9x^2 + 12 x + 5 p(4,x) = 4 (16 x^3 + 28 x^2 + 17 x + 4) p(5,x) = 5 (125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13) p(6,x) = 2 (3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163) First six rows of the triangle: 1 2 2 9 12 5 64 112 68 16 625 1375 1125 420 65 7776 20736 21600 11124 2910 326
Links
- Clark Kimberling, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] c[n_] := c[n] = Reverse[CoefficientList[p[x, n], x]]; TableForm[Table[c[n], {n, 1, 10}]] (* A248665 array *) Flatten[Table[c[n], {n, 1, 10}]] (* A248665 sequence *) u = Table[Apply[GCD, c[n]], {n, 1, 60}] (*A248666*) Flatten[Position[u, 1]] (*A248667*) Table[Apply[Plus, c[n]], {n, 1, 60}] (*A248668*)
Comments