A248666 Greatest common divisor of the coefficients of the polynomial p(n,x) defined in Comments.
1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 4, 13, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 5, 26, 1, 4, 1, 10, 1, 4, 1, 2, 5, 4, 37, 2, 13, 20, 1, 2, 1, 4, 5, 2, 1, 4, 1, 10, 1, 52, 1, 2, 5, 4, 1, 2, 1, 20, 1, 2, 1, 4, 65, 2, 1, 4, 1, 10, 1, 4, 1, 74, 5, 4, 1, 26, 1, 20, 1
Offset: 1
Examples
The first six polynomials are shown here. The number just to the right of "=" is the GCD of the coefficients. p(1,x) = 1*1 p(2,x) = 2*(x + 1) p(3,x) = 1*(9x^2 + 12 x + 5) p(4,x) = 4*(16 x^3 + 28 x^2 + 17 x + 4) p(5,x) = 5*(125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13) p(6,x) = 2*(3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163), so that A248666 = (1,2,1,4,5,2, ...).
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}]; p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[Factor[p[x, n]], {n, 1, 6}]] c[n_] := c[n] = CoefficientList[p[x, n], x]; TableForm[Table[c[n], {n, 1, 10}]] (* A248664 array *) Table[Apply[GCD, c[n]], {n, 1, 60}] (* A248666 *)
Comments