A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.
1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1
Examples
The first six polynomials: p(1,x) = 1 p(2,x) = 2 + x p(3,x) = 5 + 4 x + x^2 p(4,x) = 16 + 17 x + 7 x^2 + x^3 p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4 p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5 First six rows of the triangle: 1 2 1 5 4 1 16 17 7 1 65 84 45 11 1 326 485 309 100 16 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}]; q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}]; TableForm[Table[q[x, n], {n, 1, 6}]]; TableForm[Table[Factor[q[x, n]], {n, 1, 6}]]; c[n_] := c[n] = CoefficientList[q[x, n], x]; TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *) Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
Formula
q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
Comments