cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248669 Triangular array of coefficients of polynomials q(n,k) defined in Comments.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 17, 7, 1, 65, 84, 45, 11, 1, 326, 485, 309, 100, 16, 1, 1957, 3236, 2339, 909, 196, 22, 1, 13700, 24609, 19609, 8702, 2281, 350, 29, 1, 109601, 210572, 181481, 89225, 26950, 5081, 582, 37, 1, 986410, 2004749, 1843901, 984506, 331775
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). The arrays at A248229 and A248664 have the same first column, given by A000522(n) for n >= 0. The alternating row sums of the array at A248669 are also given by A000522; viz., q(n,-1) = q(n-1,0) = A000522(n-2) for n >= 2. Column 2 of A248669 is given by A093344(n) for n >= 1.

Examples

			The first six polynomials:
p(1,x) = 1
p(2,x) = 2 + x
p(3,x) = 5 + 4 x + x^2
p(4,x) = 16 + 17 x + 7 x^2 + x^3
p(5,x) = 65 + 8 x + 45 x^2 + 11 x^3 + x^4
p(6,x) = 326 + 485 x + 309 x^2 + 100 x^3 + 16 x^4 + x^5
First six rows of the triangle:
1
2     1
5     4     1
16    17    7    1
65    84    45   11    1
326   485  309   100   16   1
		

Crossrefs

Programs

  • Mathematica
    t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
    q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
    TableForm[Table[q[x, n], {n, 1, 6}]];
    TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
    c[n_] := c[n] = CoefficientList[q[x, n], x];
    TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
    Flatten[Table[c[n], {n, 1, 12}]]   (* A248669 sequence *)

Formula

q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.