A248676 Decimal expansion of r = sum_{n >= 0} floor(n/3)!/n!.
2, 7, 1, 9, 9, 0, 9, 2, 6, 5, 4, 9, 0, 8, 5, 3, 8, 3, 4, 2, 1, 3, 2, 2, 2, 8, 6, 5, 2, 2, 4, 5, 2, 5, 2, 1, 1, 9, 3, 3, 1, 0, 0, 7, 6, 0, 4, 8, 4, 7, 1, 6, 7, 2, 7, 5, 0, 8, 5, 8, 8, 5, 5, 8, 9, 5, 9, 7, 4, 1, 7, 4, 6, 6, 1, 0, 2, 9, 5, 5, 8, 4, 9, 5, 0, 1
Offset: 1
Examples
r = 2.71990926549085383421322286522452521...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Maple
evalf(sum(floor(n/3)!/n!, n=0..infinity),120); # Vaclav Kotesovec, Oct 17 2014
-
Mathematica
x = N[Sum[Floor[n/2]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248675 *) x = N[Sum[Floor[n/3]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248676 *) x = N[Sum[Floor[n/4]!/n!, {n, 0, 200}], 120] RealDigits[x][[1]] (* A248677 *)
Formula
r = sum_{n >= 0} p(3,n)*n!/(3*n + 2)!, where p(k,n) is defined at A248664.