cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248682 Decimal expansion of Sum_{n >= 0} (floor(n/2)!)^2/n!.

Original entry on oeis.org

2, 9, 4, 5, 5, 9, 9, 4, 3, 4, 8, 7, 4, 8, 6, 0, 3, 1, 1, 6, 3, 9, 1, 8, 0, 6, 7, 3, 4, 5, 9, 6, 9, 3, 9, 8, 4, 2, 5, 2, 5, 0, 3, 3, 3, 1, 6, 3, 7, 9, 9, 1, 6, 2, 2, 7, 2, 8, 7, 8, 6, 6, 0, 9, 2, 3, 3, 8, 8, 7, 2, 7, 2, 1, 1, 2, 3, 1, 4, 5, 6, 3, 2, 7, 4, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

Limit_{x -> inf} Sum {n=0..inf} (Floor[n/x])!^x/n! = e (A001113).
For A248682: x = 2; A248683: x = 3; A248684: x = 4; A248685: x = 5. - Robert G. Wilson v, Feb 22 2016
Let n} denote the swinging factorial A056040(n), then the constant equals Sum_{n>=0} 1/n} and is sometimes called the swinging constant e}. ("e}" is written in TeX $e\wr$). For a proof that it equals 3^(1/2)*(2/3)^3*Pi + 4/3 see the link to Mathematics Stack Exchange. - Peter Luschny, Jul 22 2022

Examples

			2.94559943487486031163918067345969398425250...
		

Crossrefs

Cf. A001113, A248683, A248684, A248785, A248664, A056040 (swinging factorial).

Programs

  • Mathematica
    RealDigits[Sum[(Floor[n/2])!^2/n!, {n, 0, 400}], 10, 111][[1]]
    RealDigits[4/3+8Pi/Sqrt[243],10,111][[1]] (* Robert G. Wilson v, Feb 10 2016 *)
  • PARI
    suminf(n=0, ((n\2)!)^2/n!) \\ Michel Marcus, Feb 11 2016

Formula

Equals Sum_{n >= 0} (n!^2)*p(2,n)/(2*n + 1)!, where p(k,n) is defined at A248664.
Equals Sum_{n >= 0} (floor(n/2)!)^2/n! = Sum_(n >= 1) (3n^2 - 7n + 6)/C(2n, n) = 4/3 + 8*Pi/sqrt(243). - Robert G. Wilson v, Feb 11 2016
Equals 1 + Integral_{x>=0} 1/(x^2 - x + 1)^2 dx. - Amiram Eldar, Nov 16 2021