A248682 Decimal expansion of Sum_{n >= 0} (floor(n/2)!)^2/n!.
2, 9, 4, 5, 5, 9, 9, 4, 3, 4, 8, 7, 4, 8, 6, 0, 3, 1, 1, 6, 3, 9, 1, 8, 0, 6, 7, 3, 4, 5, 9, 6, 9, 3, 9, 8, 4, 2, 5, 2, 5, 0, 3, 3, 3, 1, 6, 3, 7, 9, 9, 1, 6, 2, 2, 7, 2, 8, 7, 8, 6, 6, 0, 9, 2, 3, 3, 8, 8, 7, 2, 7, 2, 1, 1, 2, 3, 1, 4, 5, 6, 3, 2, 7, 4, 7
Offset: 1
Examples
2.94559943487486031163918067345969398425250...
Links
- Georg Fischer, Table of n, a(n) for n = 1..1000 (first 149 terms from Clark Kimberling)
- Jan Eerland, Answer to question 3689772, Mathematics Stack Exchange, 2021. See also question 3692793.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Sum[(Floor[n/2])!^2/n!, {n, 0, 400}], 10, 111][[1]] RealDigits[4/3+8Pi/Sqrt[243],10,111][[1]] (* Robert G. Wilson v, Feb 10 2016 *)
-
PARI
suminf(n=0, ((n\2)!)^2/n!) \\ Michel Marcus, Feb 11 2016
Formula
Equals Sum_{n >= 0} (n!^2)*p(2,n)/(2*n + 1)!, where p(k,n) is defined at A248664.
Equals Sum_{n >= 0} (floor(n/2)!)^2/n! = Sum_(n >= 1) (3n^2 - 7n + 6)/C(2n, n) = 4/3 + 8*Pi/sqrt(243). - Robert G. Wilson v, Feb 11 2016
Equals 1 + Integral_{x>=0} 1/(x^2 - x + 1)^2 dx. - Amiram Eldar, Nov 16 2021
Comments