A248684 Decimal expansion of r = sum{(floor(n/4)!)^4/n!, n >= 0}.
2, 7, 1, 8, 7, 0, 2, 6, 4, 1, 9, 1, 0, 8, 5, 1, 4, 9, 7, 0, 8, 6, 7, 5, 2, 2, 0, 0, 2, 8, 7, 7, 5, 6, 6, 2, 1, 8, 3, 3, 6, 8, 3, 4, 7, 2, 3, 1, 0, 3, 5, 9, 5, 2, 9, 5, 3, 3, 5, 0, 8, 1, 7, 4, 0, 3, 4, 9, 4, 7, 0, 0, 8, 4, 4, 5, 0, 8, 3, 5, 1, 0, 9, 9, 5, 8
Offset: 1
Examples
r = 2.718702641910851497086752200287756621...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
RealDigits[Sum[(Floor[n/4])!^4/n!, {n, 0, 400}], 10, 111][[1]]
-
PARI
suminf(n=0, ((n\4)!)^4/n!) \\ Michel Marcus, Feb 23 2016
Formula
r = sum{(n!^4)*p(4,n)/(4*n + 3)!, n >= 0}, where p(k,n) is defined at A248664.