cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248686 Triangular array of multinomial coefficients: T(n,k) = n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1 .. k.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 6, 12, 24, 1, 10, 30, 60, 120, 1, 20, 90, 180, 360, 720, 1, 35, 210, 630, 1260, 2520, 5040, 1, 70, 560, 2520, 5040, 10080, 20160, 40320, 1, 126, 1680, 7560, 22680, 45360, 90720, 181440, 362880, 1, 252, 4200, 25200, 113400, 226800, 453600, 907200, 1814400, 3628800
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

T(n,k) is the number of permutations p of [n] such that p(i)Alois P. Heinz, Feb 09 2023

Examples

			First seven rows:
  1
  1    2
  1    3     6
  1    6    12   24
  1   10    30   60    120
  1   20    90  180    360    720
  1   35   210  630   1260   2520   5040
  ...
Writing floor as [ ], the numbers comprising row 4 are
T(4,1) = 4!/[4/1]! = 24/24 = 1
T(4,2) = 4!/([4/2]![5/2]!) = 24/(2*2) = 6
T(4,3) = 4!/([4/3]![5/3]![6/3]!) = 24/(1*1*2) = 12
T(4,4) = 4!/([4/4]![5/4]![6/4]![7/4]!) = 24/(1*1*1*1) = 24.
		

Crossrefs

Main diagonal is A000142.
T(2n,n) gives A000680.
Row sums give A248687.
Cf. A333706.

Programs

  • Maple
    T:= (n, k)-> combinat[multinomial](n, floor((n+i)/k)$i=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}]
    t = Table[f[n, k], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A248686 sequence *)
    TableForm[t]    (* A248686 array *)
    Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *)