cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248712 Numbers n that are the product of four distinct primes such that x^2+y^2 = n has integer solutions.

Original entry on oeis.org

2210, 3770, 4810, 4930, 5330, 6290, 6890, 6970, 7930, 9010, 9490, 10370, 10730, 11570, 11890, 12410, 12610, 12818, 13130, 14170, 14690, 15130, 15170, 15370, 16354, 16490, 17170, 17690, 17810, 18122, 18530, 19210, 19370, 19610, 20410, 21170, 21730, 22490
Offset: 1

Views

Author

Colin Barker, Oct 12 2014

Keywords

Comments

Union of 2*A264498 and A264499. - Ray Chandler, Dec 09 2019

Examples

			2210 is in the sequence because 2210 = 2*5*13*17, and x^2+y^2=2210 has integer solutions (x,y) = (1,47), (19,43), (23,41) and (29,37).
32045 is in the sequence because x^2 + y^2 = 32045 = 5*13*17*29 has solutions (x,y) = (2,179), (19,178), (46,173), (67,166), (74,163), (86,157), (109,142) and (122,131).
		

Crossrefs