A248736 Array, read by antidiagonals, of the numbers of digits in the decimal expansion of the number of partitions of b^n employing a conjectured formula. See both the Comments and the Mathematica coding.
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 2, 4, 7, 8, 4, 1, 2, 5, 10, 15, 15, 7, 1, 2, 6, 14, 25, 32, 27, 10, 1, 2, 7, 18, 37, 58, 67, 48, 15, 1, 2, 8, 22, 51, 94, 135, 138, 86, 22, 1, 2, 9, 27, 67, 140, 236, 306, 280, 152, 32, 1, 2, 10, 32, 86, 197, 377, 584, 690, 565, 266, 47
Offset: 1
Examples
\n 0 1 2 3 4 5 6 7 8 9 10 11 ... b\ 2 1 1 1 2 3 4 7 10 15 22 32 47 3 1 1 2 4 8 15 27 48 86 152 266 463 4 1 1 3 7 15 32 67 138 280 565 1134 2275 5 1 1 4 10 25 58 135 306 690 1550 3474 7776 6 1 2 5 14 37 94 236 584 1437 3529 8654 21210 7 1 2 6 18 51 140 377 1005 2668 7069 18714 49527 8 1 2 7 22 67 197 565 1607 4555 12898 36494 103238 9 1 2 8 27 86 266 806 2429 7301 21918 65771 197332 10 1 2 9 32 107 347 1108 3515 11132 35219 111391 352269 11 1 2 10 37 130 442 1476 4910 16302 54085 179401 595031 12 1 2 11 43 156 550 1918 6661 23091 80011 277190 960240
Crossrefs
Programs
-
Mathematica
f[n_, b_] := Ceiling[(Pi*Sqrt[2/3]*Sqrt[b]^n - Log[48]/2 - n*Log[b]) / Log[10]]; Table[ f[n - b, b], {n, 2, 20}, {b, n, 2, -1}] // Flatten (* cross checked with *) g[n_, b_] := f[n, b] = Floor[ Log10[ PartitionsP[ b^n]] + 1]; Table[ f[n - b, b], {n, 2, 20}, {b, n, 2, -1}] // Flatten
Formula
a(b,n) = ceiling(Pi*sqrt(2/3)*sqrt(b)^n - log(48)/2 - n*log b) / log(10).
Comments