cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248733 Number of digits in the decimal expansion of the number of partitions of 6^n.

Original entry on oeis.org

1, 2, 5, 14, 37, 94, 236, 584, 1437, 3529, 8654, 21210, 51966, 127302, 311840, 763864, 1871094, 4583243
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Log(10,(NumberOfPartitions(6^n))))+1: n in [0..7]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[ 6^n]] + 1]; Table[ f@n, {n, 0, 17}]
  • PARI
    a(n) = #Str(numbpart(6^n)); \\ Michel Marcus, Oct 16 2014
    
  • Python
    from sympy import npartitions
    from gmpy2 import digits
    def A248733(n): return len(digits(npartitions(6**n))) # Chai Wah Wu, Jul 15 2024

Formula

A248733 = A055642 o A000041 o A000400. \\ M. F. Hasler, Oct 16 2014

A248729 Number of digits in the decimal expansion of the number of partitions of 3^n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 27, 48, 86, 152, 266, 463, 806, 1400, 2429, 4212, 7301, 12651, 21918, 37969, 65771, 113926, 197332, 341797, 592018, 1025414, 1776077
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Log(10,(NumberOfPartitions(3^n))))+1: n in [0..12]]; // Vincenzo Librandi, Oct 13 2014
  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[ 3^n]] + 1]; Table[ f@n, {n, 0, 30}]
    IntegerLength[PartitionsP[3^Range[0,30]]] (* Harvey P. Dale, Sep 05 2023 *)
  • PARI
    a(n) = #Str(numbpart(3^n)); \\ Michel Marcus, Oct 13 2014
    

Formula

a(n) = A055642(A248728(n)). - R. J. Mathar, Nov 17 2014

A248731 Number of digits in the decimal expansion of the number of partitions of 5^n.

Original entry on oeis.org

1, 1, 4, 10, 25, 58, 135, 306, 690, 1550, 3474, 7776, 17398, 38912, 87022, 194598, 435148, 973034, 2175785
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Log(10,(NumberOfPartitions(5^n))))+1: n in [0..8]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[ 5^n]] + 1]; Table[ f@n, {n, 0, 30}]
    IntegerLength[PartitionsP[5^Range[0,18]]] (* Harvey P. Dale, Sep 10 2021 *)
  • PARI
    a(n) = #Str(numbpart(5^n)); \\ Michel Marcus, Oct 16 2014

A248735 Number of digits in the decimal expansion of the number of partitions of 7^n.

Original entry on oeis.org

1, 2, 6, 18, 51, 140, 377, 1005, 2668, 7069, 18714, 49527, 131052, 346746, 917422, 2427289
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Log(10,(NumberOfPartitions(7^n))))+1: n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[ 7^n]] + 1]; Table[ f@n, {n, 0, 15}]
    IntegerLength[PartitionsP[7^#]]&/@Range[0,15] (* Harvey P. Dale, Apr 27 2015 *)
  • PARI
    a(n) = #Str(numbpart(7^n)); \\ Michel Marcus, Oct 16 2014

Formula

a(n) = A055642(A248734(n)). - R. J. Mathar, Nov 17 2014
Showing 1-4 of 4 results.