A248751 Decimal expansion of limit of the real part of f(1-i,n)/f(1-i,n+1), where f(x,n) is the n-th Fibonacci polynomial.
5, 2, 9, 0, 8, 5, 5, 1, 3, 6, 3, 5, 7, 4, 6, 1, 2, 5, 1, 6, 0, 9, 9, 0, 5, 2, 3, 7, 9, 0, 2, 2, 5, 2, 1, 0, 6, 1, 9, 3, 6, 5, 0, 4, 9, 8, 3, 8, 9, 0, 9, 7, 4, 3, 1, 4, 0, 7, 7, 1, 1, 7, 6, 3, 2, 0, 2, 3, 9, 8, 1, 1, 5, 7, 9, 1, 8, 9, 4, 6, 2, 7, 7, 1, 1, 4
Offset: 0
Examples
limit = 0.52908551363574612516099052379022521061936504... Let q(x,n) = f(x,n)/f(x,n+1) and c = 1-i. n f(x,n) Re(q(c,n)) Im(q(c,n)) 1 1 1/2 1/2 2 x 3/5 1/5 3 1 + x^2 1/2 1/4 4 2*x + x^3 8/15 4/15 5 1 + 3*x^2 + x^4 69/130 33/130 Re(q(1-i,11)) = 5021/9490 = 0.5290832... Im(q(1-i,11)) = 4879/18980 = 0.257060...
Programs
-
Maple
evalf((sqrt(2+sqrt(5))-1)/2, 120); # Vaclav Kotesovec, Oct 19 2014
-
Mathematica
z = 300; t = Table[Fibonacci[n, x]/Fibonacci[n + 1, x], {n, 1, z}]; u = t /. x -> 1 - I; d1 = N[Re[u][[z]], 130] d2 = N[Im[u][[z]], 130] r1 = RealDigits[d1] (* A248751 *) r2 = RealDigits[d2] (* A248752 *)
-
PARI
polrootsreal(4*x^4+8*x^3+2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Nov 26 2024
Formula
Equals (sqrt(2+sqrt(5))-1)/2. - Vaclav Kotesovec, Oct 19 2014
Comments