A248762 Greatest cube that divides n!.
1, 1, 1, 8, 8, 8, 8, 64, 1728, 1728, 1728, 13824, 13824, 13824, 46656000, 2985984000, 2985984000, 2985984000, 2985984000, 23887872000, 221225582592000, 221225582592000, 221225582592000, 1769804660736000, 221225582592000000, 221225582592000000
Offset: 1
Examples
a(4) = 8 because 8 divides 24 and if k > 2 then k^3 does not divide 24.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 3; Table[p[m, n], {n, 1, z}] (* A248762 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248763 *) Table[n!/p[m, n], {n, 1, z}] (* A145642 *) gk[n_]:=Select[Divisors[n!],IntegerQ[Surd[#,3]]&]; Max[#]&/@Array[gk,30] (* Harvey P. Dale, Sep 16 2021 *) f[p_, e_] := p^(3*Floor[e/3]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
-
PARI
a(n)=k=ceil((n!/2)^(1/3));while(n!%k^3,k--);k^3 vector(20,n,a(n)) \\ Derek Orr, Oct 19 2014
-
PARI
a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(3*(f[i, 2]\3)));} \\ Amiram Eldar, Sep 01 2024
Formula
a(n) = n!/A145642(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008834(n!).
a(n) = A248763(n)^3. (End)
Comments