cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248763 Greatest k such that k^3 divides n!

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 12, 12, 12, 24, 24, 24, 360, 1440, 1440, 1440, 1440, 2880, 60480, 60480, 60480, 120960, 604800, 604800, 1814400, 3628800, 3628800, 3628800, 3628800, 14515200, 479001600, 479001600, 479001600, 958003200, 958003200, 958003200
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(4) = 2 because 2^3 divides 24 and if k > 2, then k^3 > 8 does not divide 24.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 3; Table[p[m, n], {n, 1, z}]  (* A248762 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248763 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A145642 *)
    f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\3));} \\ Amiram Eldar, Sep 01 2024

Formula

From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053150(n!).
a(n) = (n! / A145642(n))^(1/3) = A248762(n)^(1/3).
log(a(n)) = (1/3)*n*log(n) - (log(3)+1)*n/3 + o(n) (Jakimczuk, 2017). (End)