A248763 Greatest k such that k^3 divides n!
1, 1, 1, 2, 2, 2, 2, 4, 12, 12, 12, 24, 24, 24, 360, 1440, 1440, 1440, 1440, 2880, 60480, 60480, 60480, 120960, 604800, 604800, 1814400, 3628800, 3628800, 3628800, 3628800, 14515200, 479001600, 479001600, 479001600, 958003200, 958003200, 958003200
Offset: 1
Examples
a(4) = 2 because 2^3 divides 24 and if k > 2, then k^3 > 8 does not divide 24.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Rafael Jakimczuk, On the h-th free part of the factorial, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 3; Table[p[m, n], {n, 1, z}] (* A248762 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248763 *) Table[n!/p[m, n], {n, 1, z}] (* A145642 *) f[p_, e_] := p^Floor[e/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 01 2024 *)
-
PARI
a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\3));} \\ Amiram Eldar, Sep 01 2024
Formula
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053150(n!).
log(a(n)) = (1/3)*n*log(n) - (log(3)+1)*n/3 + o(n) (Jakimczuk, 2017). (End)
Comments