A248764 Greatest 4th power integer that divides n!
1, 1, 1, 1, 1, 16, 16, 16, 1296, 20736, 20736, 20736, 20736, 20736, 20736, 331776, 331776, 429981696, 429981696, 268738560000, 268738560000, 268738560000, 268738560000, 4299816960000, 4299816960000, 4299816960000, 348285173760000, 13379723235164160000
Offset: 1
Examples
a(6) = 16 because 16 divides 6! and if k > 2 then k^4 does not divide 6!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *) Table[n!/p[m, n], {n, 1, z}] (* A248766 *) f[p_, e_] := p^(4*Floor[e/4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
-
PARI
a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]\4)));} \\ Amiram Eldar, Sep 01 2024
Formula
a(n) = n!/A248766(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008835(n!).
a(n) = A248765(n)^4. (End)
Comments