cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248764 Greatest 4th power integer that divides n!

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 16, 16, 1296, 20736, 20736, 20736, 20736, 20736, 20736, 331776, 331776, 429981696, 429981696, 268738560000, 268738560000, 268738560000, 268738560000, 4299816960000, 4299816960000, 4299816960000, 348285173760000, 13379723235164160000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(6) = 16 because 16 divides 6! and if k > 2 then k^4 does not divide 6!.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 4; Table[p[m, n], {n, 1, z}]  (* A248764 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248765 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248766 *)
    f[p_, e_] := p^(4*Floor[e/4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]\4)));} \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A248766(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008835(n!).
a(n) = A248765(n)^4. (End)