A248765 Greatest k such that k^4 divides n!
1, 1, 1, 1, 1, 2, 2, 2, 6, 12, 12, 12, 12, 12, 12, 24, 24, 144, 144, 720, 720, 720, 720, 1440, 1440, 1440, 4320, 60480, 60480, 60480, 60480, 120960, 120960, 241920, 1209600, 3628800, 3628800, 3628800, 3628800, 7257600
Offset: 1
Examples
a(6) = 2 because 2^4 divides 6! and if k > 2 then k^4 does not divide 6!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Rafael Jakimczuk, On the h-th free part of the factorial, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *) Table[n!/p[m, n], {n, 1, z}] (* A248766 *) f[p_, e_] := p^Floor[e/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
-
PARI
a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\4));} \\ Amiram Eldar, Sep 01 2024
Formula
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053164(n!).
log(a(n)) = (1/4)*n*log(n) - (2*log(2)+1)*n/4 + o(n) (Jakimczuk, 2017). (End)
Comments