A248766 Greatest 4th-power-free divisor of n!
1, 2, 6, 24, 120, 45, 315, 2520, 280, 175, 1925, 23100, 300300, 4204200, 63063000, 63063000, 1072071000, 14889875, 282907625, 9053044, 190113924, 4182506328, 96197645544, 144296468316, 3607411707900, 93792704405400, 31264234801800, 22787343150, 660832951350
Offset: 1
Examples
a(6) = 45 because 45 divides 6! and if k > 45 divides 6!, then h^4 divides 6!/k for some h > 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Rafael Jakimczuk, On the h-th free part of the factorial, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.
Programs
-
Mathematica
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *) Table[n!/p[m, n], {n, 1, z}] (* A248766 *) f[p_, e_] := p^Mod[e, 4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
-
PARI
a(n) = my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2] % 4)); \\ Amiram Eldar, Sep 01 2024
Formula
a(n) = n!/A248764(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053165(n!).
log(a(n)) = 2*log(2) * n + o(n) (Jakimczuk, 2017). (End)
Comments