cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248766 Greatest 4th-power-free divisor of n!

Original entry on oeis.org

1, 2, 6, 24, 120, 45, 315, 2520, 280, 175, 1925, 23100, 300300, 4204200, 63063000, 63063000, 1072071000, 14889875, 282907625, 9053044, 190113924, 4182506328, 96197645544, 144296468316, 3607411707900, 93792704405400, 31264234801800, 22787343150, 660832951350
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Examples

			a(6) = 45 because 45 divides 6! and if k > 45 divides 6!, then h^4 divides 6!/k for some h > 1.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 4; Table[p[m, n], {n, 1, z}]  (* A248764 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248765 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248766 *)
    f[p_, e_] := p^Mod[e, 4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2] % 4)); \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A248764(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053165(n!).
log(a(n)) = 2*log(2) * n + o(n) (Jakimczuk, 2017). (End)

A248781 Number of integers k^4 that divide n!

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 8, 8, 15, 15, 30, 30, 30, 30, 36, 36, 36, 48, 112, 112, 112, 112, 128, 128, 144, 216, 270, 270, 270, 270, 300, 300, 300, 300, 660, 792, 792, 792, 864, 1296, 1728, 1728, 3744, 3744, 4368, 4368, 4704, 4704, 4704
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(10) counts these divisors of 10!:  1, 16, 81, 256, 1296, 20736.
		

Crossrefs

Programs

  • Mathematica
    z = 130; m = 4;
    f[n_] := f[n] = FactorInteger[n!]; r[x_] := r[x] = m*Floor[x/m]
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    a[n_] := Apply[Times, 1 + r[v[n]]/m]
    t = Table[a[n], {n, 1, z}] (* A248781 *)
  • PARI
    a(n)=c=0;d=divisors(n!);for(i=1,#d,if(ispower(d[i])&&ispower(d[i])%4==0,c++));c+1
    n=1;while(n<50,print1(a(n),", ");n++) \\ Derek Orr, Oct 20 2014

A248764 Greatest 4th power integer that divides n!

Original entry on oeis.org

1, 1, 1, 1, 1, 16, 16, 16, 1296, 20736, 20736, 20736, 20736, 20736, 20736, 331776, 331776, 429981696, 429981696, 268738560000, 268738560000, 268738560000, 268738560000, 4299816960000, 4299816960000, 4299816960000, 348285173760000, 13379723235164160000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(6) = 16 because 16 divides 6! and if k > 2 then k^4 does not divide 6!.
		

Crossrefs

Programs

  • Mathematica
    z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 4; Table[p[m, n], {n, 1, z}]  (* A248764 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248765 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248766 *)
    f[p_, e_] := p^(4*Floor[e/4]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
  • PARI
    a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(4*(f[i, 2]\4)));} \\ Amiram Eldar, Sep 01 2024

Formula

a(n) = n!/A248766(n).
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A008835(n!).
a(n) = A248765(n)^4. (End)
Showing 1-3 of 3 results.