A248768 Greatest k such that k^5 divides n!
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 24, 24, 144, 720, 720, 720, 1440, 1440, 1440, 1440, 2880, 8640, 8640, 60480, 60480, 60480, 120960, 120960, 120960, 120960, 120960, 120960, 241920, 3628800, 3628800, 3628800, 7257600
Offset: 1
Examples
a(8) = 2 because 2^5 divides 8! and if k > 2 then k^5 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 5; Table[p[m, n], {n, 1, z}] (* A248767 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248768 *) Table[n!/p[m, n], {n, 1, z}] (* A248769 *)
Comments