A248771 Greatest k such that k^6 divides n!
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 6, 12, 12, 12, 12, 24, 24, 24, 24, 24, 120, 120, 360, 720, 720, 720, 720, 1440, 1440, 1440, 1440, 1440, 1440, 1440, 4320, 8640, 8640, 60480, 60480, 60480, 60480, 120960, 120960, 120960, 120960, 604800
Offset: 1
Examples
a(8) = 2 because 2^6 divides 8! and if k > 2 then k^6 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 6; Table[p[m, n], {n, 1, z}] (* A248770 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248771 *) Table[n!/p[m, n], {n, 1, z}] (* A248772 *)
Comments