A248773 Greatest 7th power integer that divides n!.
1, 1, 1, 1, 1, 1, 1, 128, 128, 128, 128, 128, 128, 128, 128, 16384, 16384, 35831808, 35831808, 35831808, 35831808, 35831808, 35831808, 4586471424, 4586471424, 4586471424, 4586471424, 4586471424, 4586471424, 783641640960000000, 783641640960000000
Offset: 1
Examples
a(8) = 128 because 128 divides 8! and if k > 2 then k^7 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 7; Table[p[m, n], {n, 1, z}] (* A248773 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248774 *) Table[n!/p[m, n], {n, 1, z}] (* A248775 *)
Formula
a(n) = n!/A248775(n).
Comments