A248775 Greatest 7th-power-free divisor of n!.
1, 2, 6, 24, 120, 720, 5040, 315, 2835, 28350, 311850, 3742200, 48648600, 681080400, 10216206000, 1277025750, 21709437750, 178678500, 3394891500, 67897830000, 1425854430000, 31368797460000, 721482341580000, 135277939046250, 3381948476156250
Offset: 1
Examples
a(8) = 315 because 315 divides 8! and if k > 315 divides 8!, then h^7 divides 8!/k for some h > 1.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 50; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 7; Table[p[m, n], {n, 1, z}] (* A248773 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248774 *) Table[n!/p[m, n], {n, 1, z}] (* A248775 *)
Formula
a(n) = n!/A248773(n).
Comments