A248776 Greatest 8th power integer that divides n!
1, 1, 1, 1, 1, 1, 1, 1, 1, 256, 256, 256, 256, 256, 256, 256, 256, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 110075314176, 110075314176, 110075314176, 110075314176, 110075314176
Offset: 1
Examples
a(8) = 128 because 128 divides 8! and if k > 2 then k^8 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 60; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 8; Table[p[m, n], {n, 1, z}] (* A248776 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248777 *) Table[n!/p[m, n], {n, 1, z}] (* A248778 *) Module[{e=Range[30]^8},Table[Max[Select[e,Divisible[n!,#]&]],{n,40}]] (* Harvey P. Dale, Dec 23 2019 *)
Formula
a(n) = n!/A248778(n).
Comments