cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248778 Greatest 8th-power-free divisor of n!.

Original entry on oeis.org

1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 14175, 155925, 1871100, 24324300, 340540200, 5108103000, 81729648000, 1389404016000, 14889875, 282907625, 5658152500, 118821202500, 2614066455000, 60123528465000, 1442964683160000, 36074117079000000
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Examples

			a(8) = 315 because 315 divides 8! and if k > 315 divides 8!, then h^7 divides 8!/k for some h > 1.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 8; Table[p[m, n], {n, 1, z}]  (* A248776 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248777 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248778 *)

Formula

a(n) = n!/A248773(n).

A248776 Greatest 8th power integer that divides n!

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 256, 256, 256, 256, 256, 256, 256, 256, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 429981696, 110075314176, 110075314176, 110075314176, 110075314176, 110075314176
Offset: 1

Views

Author

Clark Kimberling, Oct 14 2014

Keywords

Comments

Every term divides all its successors.

Examples

			a(8) = 128 because 128 divides 8! and if k > 2 then k^8 does not divide 8!.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
    m = 8; Table[p[m, n], {n, 1, z}]  (* A248776 *)
    Table[p[m, n]^(1/m), {n, 1, z}]   (* A248777 *)
    Table[n!/p[m, n], {n, 1, z}]      (* A248778 *)
    Module[{e=Range[30]^8},Table[Max[Select[e,Divisible[n!,#]&]],{n,40}]] (* Harvey P. Dale, Dec 23 2019 *)

Formula

a(n) = n!/A248778(n).
Showing 1-2 of 2 results.