A248777 Greatest k such that k^8 divides n!
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24, 48, 240, 720, 720, 720, 720, 720, 720, 720, 720, 1440, 1440, 1440, 1440, 1440, 10080, 10080, 10080, 20160, 20160, 60480, 60480, 60480, 60480
Offset: 1
Examples
a(10) = 2 because 2^10 divides 8! and if k > 2 then k^8 does not divide 8!.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 60; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m]; u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}]; m = 8; Table[p[m, n], {n, 1, z}] (* A248776 *) Table[p[m, n]^(1/m), {n, 1, z}] (* A248777 *) Table[n!/p[m, n], {n, 1, z}] (* A248778 *)
Comments