A248780 Number of cubes that divide n!
1, 1, 1, 2, 2, 2, 2, 3, 6, 6, 6, 8, 8, 8, 24, 36, 36, 36, 36, 42, 112, 112, 112, 128, 192, 192, 240, 270, 270, 270, 270, 330, 792, 792, 792, 864, 864, 864, 2016, 2912, 2912, 4704, 4704, 4704, 5376, 5760, 5760, 6144, 6144, 7680, 15360, 16320, 16320, 18360
Offset: 1
Examples
a(9) counts these divisors of 9!: 1, 8, 27, 64, 216, 1728.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
z = 130; m = 3; f[n_] := f[n] = FactorInteger[n!]; v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}]; a[n_] := Apply[Times, 1 + Floor[v[n]/m]] A248780 = Table[a[n], {n, 1, z}] (* simplified by M. F. Hasler, Oct 22 2014 *)
-
PARI
a(n)=sumdiv(n!,d,ispower(d,3)) for(n=1,50,print1(a(n),", ")) \\ Derek Orr, Oct 20 2014, simplified by M. F. Hasler, Oct 22 2014
-
PARI
A248780(n)=prod(i=1,#n=factor(n!)[,2],1+n[i]\3) \\ M. F. Hasler, Oct 22 2014
Formula
a(n) = product_{i=1..r} 1+floor(e[i]/3), where product_{i=1..r} p[i]^e[i] is the prime factorization of n!. - M. F. Hasler, Oct 22 2014