cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248787 Numbers x such that sigma(x) = rev(sigma*(x)), where sigma(x) is the sum of the divisors of x, sigma*(x) the sum of the anti-divisors of x and rev(x) the reverse of x.

Original entry on oeis.org

20, 26, 36531, 42814, 4513010, 63033577
Offset: 1

Views

Author

Paolo P. Lava, Oct 14 2014

Keywords

Comments

No further terms up to 10^6.
a(7) > 10^10. - Hiroaki Yamanouchi, Mar 18 2015

Examples

			Antidivisors of 20 are 3,8,13 and their sum is 24, while sigma(20) = 42.
Antidivisors of 26 are 3,4,17 and their sum is 24, while sigma(26) = 42.
Antidivisors of 36531 are 2, 6, 18, 22, 54, 66, 82, 162, 198, 246, 594, 738, 902, 1782, 2214, 2706, 6642, 8118, 24354 and their sum is sigma*(36531) = 48906, while sigma(36531) = 60984.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=proc(w) local x,y,z; y:=w; z:=0;
    for x from 1 to ilog10(w)+1 do z:=10*z+(y mod 10); y:=trunc(y/10); od; z; end:
    P:=proc(q) local a,j,k,n; for n from 1 to q do
    k:=0; j:=n; while j mod 2 <> 1 do k:=k+1; j:=j/2; od;
    a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    if T(a)=sigma(n) then print(n); fi; od; end: P(10^10);
  • PARI
    rev(n) = subst(Polrev(digits(n)), x, 10);
    sad(n) = k=valuation(n, 2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    isok(n) = sigma(n) == rev(sad(n)); \\ Michel Marcus, Dec 07 2014

Extensions

a(5) from Chai Wah Wu, Dec 06 2014
a(6) from Hiroaki Yamanouchi, Mar 18 2015