A248809 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
1, 2, 1, 3, 2, 1, 8, 7, 2, 1, 15, 18, 12, 2, 1, 48, 57, 30, 18, 2, 1, 105, 174, 141, 44, 25, 2, 1, 384, 561, 414, 285, 60, 33, 2, 1, 945, 1950, 1830, 810, 510, 78, 42, 2, 1, 3840, 6555, 6090, 4680, 1410, 840, 98, 52, 2, 1, 10395, 25290, 26685, 15000, 10290
Offset: 0
Examples
f(0,x) = 1/1, so that p(0,x) = 1. f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x. f(2,x) = (3 + 2 x + x^2)/(2 + x), so that p(2,x) = 3 + 2 x + x^2. First 6 rows of the triangle of coefficients: 1 2 1 3 2 1 8 7 2 1 15 18 12 2 1 48 57 30 18 2 1
Links
- Clark Kimberling, Rows 0..100, flattened.
Programs
-
Mathematica
z = 15; f[x_, n_] := x + (n + 1)/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}] u = Numerator[t] TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (*A248809 array*) Flatten[CoefficientList[u, x]] (*A249809 sequence*)
-
PARI
rown(n) = if (n==0, 1, x + (n+1)/rown(n-1)); tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 25 2014
Comments