cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248809 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 8, 7, 2, 1, 15, 18, 12, 2, 1, 48, 57, 30, 18, 2, 1, 105, 174, 141, 44, 25, 2, 1, 384, 561, 414, 285, 60, 33, 2, 1, 945, 1950, 1830, 810, 510, 78, 42, 2, 1, 3840, 6555, 6090, 4680, 1410, 840, 98, 52, 2, 1, 10395, 25290, 26685, 15000, 10290
Offset: 0

Views

Author

Clark Kimberling, Oct 23 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (n + 1)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A000982(n+1) for n >= 0.
(Column 1) is essentially A006882 (double factorials).

Examples

			f(0,x) = 1/1, so that p(0,x) = 1.
f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x.
f(2,x) = (3 + 2 x + x^2)/(2 + x), so that p(2,x) = 3 + 2 x + x^2.
First 6 rows of the triangle of coefficients:
1
2    1
3    2     1
8    7     2    1
15   18   12    2    1
48   57   30    18   2    1
		

Crossrefs

Programs

  • Mathematica
    z = 15; f[x_, n_] := x + (n + 1)/f[x, n - 1]; f[x_, 0] = 1;
    t = Table[Factor[f[x, n]], {n, 0, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (*A248809 array*)
    Flatten[CoefficientList[u, x]] (*A249809 sequence*)
  • PARI
    rown(n) = if (n==0, 1, x + (n+1)/rown(n-1));
    tabl(nn) = for (n=0, nn, print(Vecrev(numerator(rown(n))))); \\ Michel Marcus, Oct 25 2014