A248811 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x+3)^k for 0 <= k <= n.
1, -2, 1, 7, -5, 1, -20, 22, -8, 1, 61, -86, 46, -11, 1, -182, 319, -224, 79, -14, 1, 547, -1139, 991, -461, 121, -17, 1, -1640, 3964, -4112, 2374, -824, 172, -20, 1, 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1, -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1, 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1
Offset: 0
Examples
1; -2, 1; 7, -5, 1; -20, 22, -8, 1; 61, -86, 46, -11, 1; -182, 319, -224, 79, -14, 1; 547, -1139, 991, -461, 121, -17, 1; -1640, 3964, -4112, 2374, -824, 172, -20, 1; 4921, -13532, 16300, -11234, 4846, -1340, 232, -23, 1; -14762, 45517, -62432, 50002, -25772, 8866, -2036, 301, -26, 1; 44287, -151313, 232813, -212438, 127318, -52370, 14974, -2939, 379, -29, 1;
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Magma
[[(&+[(-3)^(j-k)*Binomial(j,k): j in [0..n]]): k in [0..n]]: n in [0..20]]; // G. C. Greubel, May 27 2018
-
Mathematica
T[n_, k_]:= Sum[(-3)^(j-k)*Binomial[j,k], {j,0,n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 27 2018 *)
-
PARI
for(n=0,20,for(k=0,n,print1(sum(i=0,n,((-3)^(i-k)* binomial(i, k)) ),", ")))
Comments