cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248824 Number of integers k^6 that divide 1!*2!*3!*...*n!.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 8, 18, 42, 64, 200, 432, 546, 960, 3888, 6000, 15180, 29952, 38976, 67200, 285600, 393984, 1632960, 3175200, 4165392, 6105600, 38413440, 55339200, 114048000, 205632000, 280219500, 448156800, 2621445120, 3777725952, 12940849152
Offset: 1

Views

Author

Clark Kimberling, Oct 15 2014

Keywords

Examples

			a(7) counts these integers k^6 that divide 125411328000 = A000178(6):  1, 64, 729, 4096, 46656, 2985984, these being k^6 for k = 1, 2, 3, 4, 6, 12.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(i[2]*x^numtheory[pi](i[1]),
          i=ifactors(n)[2])+`if`(n=1, 0, b(n-1))
        end:
    c:= proc(n) option remember; b(n)+`if`(n=1, 0, c(n-1)) end:
    a:= n->(p->mul(iquo(coeff(p, x, i), 6)+1, i=1..degree(p)))(c(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Oct 16 2014
  • Mathematica
    z = 40; p[n_] := Product[k!, {k, 1, n}];
    f[n_] := f[n] = FactorInteger[p[n]];
    r[m_, x_] := r[m, x] = m*Floor[x/m]
    u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
    v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
    t[m_, n_] := Apply[Times, 1 + r[m, v[n]]/m]
    m = 6; Table[t[m, n], {n, 1, z}] (* A248824 *)