cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248842 T(n,k)=Number of length n arrays x(i), i=1..n with x(i) in 0..i and no value appearing more than k times.

Original entry on oeis.org

2, 2, 4, 2, 6, 8, 2, 6, 22, 16, 2, 6, 24, 96, 32, 2, 6, 24, 118, 482, 64, 2, 6, 24, 120, 686, 2736, 128, 2, 6, 24, 120, 718, 4598, 17302, 256, 2, 6, 24, 120, 720, 4994, 34872, 120576, 512, 2, 6, 24, 120, 720, 5038, 39556, 295044, 917762, 1024, 2, 6, 24, 120, 720, 5040
Offset: 1

Views

Author

R. H. Hardin, Oct 15 2014

Keywords

Comments

Table starts
....2.......2........2........2........2........2........2........2........2
....4.......6........6........6........6........6........6........6........6
....8......22.......24.......24.......24.......24.......24.......24.......24
...16......96......118......120......120......120......120......120......120
...32.....482......686......718......720......720......720......720......720
...64....2736.....4598.....4994.....5038.....5040.....5040.....5040.....5040
..128...17302....34872....39556....40260....40318....40320....40320....40320
..256..120576...295044...351320...361636...362804...362878...362880...362880
..512..917762..2753958..3456742..3606044..3626872..3628706..3628798..3628800
.1024.7574016.28103804.37314126.39517182.39874764.39913932.39916686.39916798

Examples

			Some solutions for n=6 k=4
..0....0....0....0....0....0....1....0....0....1....0....0....0....1....1....1
..1....0....1....1....1....1....0....2....1....0....0....2....2....2....0....0
..3....1....0....1....1....3....1....3....1....0....0....2....2....2....3....2
..0....1....4....3....2....2....2....0....3....4....1....0....4....4....1....0
..1....2....5....2....3....4....3....4....0....5....5....2....3....5....0....5
..4....6....4....0....3....5....1....3....0....6....3....2....6....2....6....3
		

Crossrefs

Cf. A000079 (column 1), A248836 (column 2), A248837 (column 3), A248838 (column 4).

A135106 Number of physical trees of alkane structures with n carbon vertices.

Original entry on oeis.org

1, 1, 2, 6, 24, 118, 686, 4598, 34872, 295044, 2753958, 28103804, 311216626, 3716341042, 47597786154, 650812077852, 9461423560788, 145724617925326, 2370293673319292, 40600119927220706, 730458115445479734
Offset: 1

Views

Author

R. J. Mathar, Feb 12 2008

Keywords

Comments

Similar to A000602 (alkane trees with n carbon atoms) but keeping track of the history of attaching carbon atoms (methyls) to the backbone, as if these had been labeled.

Examples

			Starting with a(1)=1, one C1 methane, we get a(2)=1, the C1-C2 backbone.
The third can be attached to either C1 ending up with C3-C1-C2, or to C2 ending up with C1-C2-C3, yielding a(3)=2 different propanes.
C4 may be attached to any of C1 to C3 in these two propanes, yielding a(4)=6 different butanes, four of which are linear and two of which are stars.
		

Programs

  • Maple
    A135106 := proc(n) local numb, stack,istack,N,i ; numb := array(1..n) ; for i from 1 to n do numb[i] := 0 ; od: stack := array(1..7,1..100) ; stack[1,1]:=2 ; stack[2,1]:=0 ; stack[3,1]:=0 ; stack[4,1]:=0 ; stack[5,1]:=1 ; stack[6,1]:=0 ; stack[7,1]:=1 ; istack := 1 ; while istack <> 0 do for i from 1 to 7 do stack[i,istack+1] := stack[i,istack] ; od: if stack[6,istack] = 3 then istack := istack-1 ; else stack[6,istack] := stack[6,istack]+1 ; stack[1,istack+1] := stack[1,istack]+1 ; N := stack[6,istack] ; if stack[N,istack] <> 0 then stack[N,istack+1] := stack[N,istack+1]-1 ; stack[N+1,istack+1] := stack[N+1,istack+1]+1 ; stack[5,istack+1] := stack[N,istack]*stack[5,istack] ; stack[6,istack+1] := 0 ; stack[7,istack+1] := stack[7,istack]+1 ; numb[stack[7,istack+1]]:=numb[stack[7,istack+1]]+stack[5,istack+1] ; if stack[7,istack+1] <> n then istack := istack+1 ; fi ; fi ; fi ; od: numb[n] ; end: for n from 2 do print( A135106(n)) ; end: # R. J. Mathar, Feb 18 2008

Formula

a(n) = A248837(n-2). - Georg Fischer, Oct 23 2018

Extensions

More terms from R. J. Mathar, Feb 18 2008
a(20)-a(21) from Alois P. Heinz, May 27 2013
Showing 1-2 of 2 results.