A248849 Smallest k>0 such that 2^k*3^n-1 is a prime number.
1, 1, 1, 3, 2, 5, 1, 1, 4, 3, 20, 1, 4, 13, 2, 11, 3, 101, 12, 1, 10, 9, 1, 11, 7, 27, 1, 347, 11, 73, 4, 7, 52, 93, 1, 7, 51, 73, 46, 11, 8, 41, 4, 51, 2, 5, 30, 11, 10, 3, 280, 11, 7, 17, 14, 1, 32, 11, 5, 11, 19, 1, 20, 17, 22, 133, 6, 1
Offset: 1
Keywords
Examples
2^1*3^1-1=5 prime so a(1)=1. 2^1*3^2-1=17 prime so a(2)=1. 2^1*3^3-1=53 prime so a(3)=1.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..1500
Crossrefs
Cf. A003307.
Programs
-
Mathematica
Flatten[{1,Table[k=0; While[Not[PrimeQ[2^k*3^n-1]],k++]; k,{n,2,100}]}] (* Vaclav Kotesovec, Dec 05 2014 *)
Formula
a(n)=1 for n=A003307(i).