A248890 Number of rooted trees with n nodes such that for each inner node no more than k subtrees corresponding to its children have exactly k nodes.
0, 1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 374, 849, 1952, 4522, 10566, 24840, 58760, 139693, 333702, 800412, 1927207, 4655997, 11283835, 27423930, 66825194, 163227234, 399587270, 980222058, 2409181633, 5931839530, 14629639579, 36137308192, 89395224033
Offset: 0
Keywords
Examples
: o : o : o : o o : o o o o : : : | : | : / \ | : | / \ / \ | : : : o : o : o o o : o o o o o o : : : : | : | | : / \ | | | | : : : : o : o o : o o o o o o : : : : : | : | | | : : : : : o : o o o : : : : : : | : : n=1 : n=2 : n=3 : n=4 : n=5 o : :.....:.....:.....:...........:.......................:
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(i, n/i)))) end: a:= n-> g((n-1)$2): seq(a(n), n=0..40);
-
Mathematica
g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[i, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 28 2017, translated from Maple *)