cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248890 Number of rooted trees with n nodes such that for each inner node no more than k subtrees corresponding to its children have exactly k nodes.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 8, 16, 34, 75, 166, 374, 849, 1952, 4522, 10566, 24840, 58760, 139693, 333702, 800412, 1927207, 4655997, 11283835, 27423930, 66825194, 163227234, 399587270, 980222058, 2409181633, 5931839530, 14629639579, 36137308192, 89395224033
Offset: 0

Views

Author

Alois P. Heinz, Mar 05 2015

Keywords

Examples

			:  o  :  o  :  o  :    o   o  :    o     o     o   o  :
:     :  |  :  |  :   / \  |  :    |    / \   / \  |  :
:     :  o  :  o  :  o   o o  :    o   o   o o   o o  :
:     :     :  |  :  |     |  :   / \  |     |   | |  :
:     :     :  o  :  o     o  :  o   o o     o   o o  :
:     :     :     :        |  :  |     |           |  :
:     :     :     :        o  :  o     o           o  :
:     :     :     :           :                    |  :
: n=1 : n=2 : n=3 :  n=4      :  n=5               o  :
:.....:.....:.....:...........:.......................:
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(i, n/i))))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[i, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 28 2017, translated from Maple *)