cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248938 Decimal expansion of beta = G^2*(2/3)*Product_{prime p == 3 (mod 4)} (1 - 2/(p*(p-1)^2)) (where G is Catalan's constant), a constant related to the problem of integral Apollonian circle packings.

Original entry on oeis.org

4, 6, 1, 2, 6, 0, 9, 0, 8, 6, 1, 3, 8, 6, 1, 3, 0, 3, 3, 2, 8, 5, 2, 9, 8, 4, 6, 4, 2, 4, 6, 0, 7, 5, 1, 5, 8, 0, 1, 3, 8, 3, 4, 4, 3, 7, 6, 5, 8, 8, 2, 0, 6, 3, 0, 0, 7, 0, 3, 9, 7, 7, 5, 1, 9, 0, 7, 1, 2, 8, 1, 6, 0, 7, 2, 2, 0, 7, 4, 9, 8, 3, 7, 9, 1, 0, 4, 2, 6, 0, 7, 2, 6, 2, 1, 4, 8, 0, 7, 2, 3, 1, 6, 3, 1, 6
Offset: 0

Views

Author

Jean-François Alcover, Oct 17 2014

Keywords

Examples

			0.4612609086138613...
		

Crossrefs

Programs

  • Mathematica
    kmax = 25; Clear[P]; Do[P[k] = Product[p = Prime[n]; If[Mod[p, 4] == 3 , 1 - 2/(p*(p - 1)^2) // N[#, 40]&, 1], {n, 1, 2^k}]; Print["P(", k, ") = ", P[k]], {k, 10, kmax}]; beta = Catalan^2*(2/3)*P[kmax]; RealDigits[beta, 10, 16] // First
    (* -------------------------------------------------------------------------- *)
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (1 - 2/(p*(p - 1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[4, 3, m]; sump = sump + difp; m++];
    RealDigits[Chop[N[2*Catalan^2/3 * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

beta = (G^2/3)*A248930, where G is Catalan's constant A006752.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020