cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248947 Decimal expansion of Sum_{n >= 1} tan(1/n)^2.

Original entry on oeis.org

3, 1, 3, 2, 7, 9, 9, 3, 6, 2, 8, 1, 8, 0, 0, 5, 2, 2, 6, 7, 2, 0, 0, 3, 4, 0, 1, 2, 8, 5, 8, 5, 6, 7, 6, 3, 8, 0, 5, 2, 2, 8, 0, 5, 2, 2, 4, 1, 8, 8, 7, 2, 4, 0, 1, 1, 2, 7, 1, 9, 2, 0, 0, 4, 1, 8, 0, 5, 4, 4, 3, 7, 2, 3, 1, 9, 8, 2, 3, 3, 8, 7, 1, 5, 9, 3, 5, 4, 5, 4, 9, 3, 6, 5, 3, 7, 9, 6, 2, 9, 4, 8, 9, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			3.132799362818005226720034012858567638052280522418872401127192004180544...
		

Crossrefs

Programs

  • Maple
    evalf(sum((tan(1/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Tan[1/n]^2, {n, 1, Infinity}], 120], yields only 25 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,(tan(1/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A248951 Decimal expansion of sum_{n >= 1} (tan(2/n))^2.

Original entry on oeis.org

9, 0, 4, 3, 5, 2, 8, 6, 0, 8, 6, 5, 8, 2, 1, 1, 1, 5, 2, 6, 5, 6, 3, 8, 2, 7, 4, 7, 2, 9, 5, 8, 9, 9, 5, 7, 9, 1, 5, 1, 3, 3, 3, 5, 7, 1, 9, 8, 7, 1, 5, 0, 4, 1, 3, 9, 2, 4, 2, 5, 1, 2, 7, 8, 0, 7, 1, 9, 3, 6, 3, 4, 5, 9, 9, 6, 4, 4, 8, 8, 9, 4, 6, 7, 5, 4, 6, 4, 2, 4, 8, 4, 7, 2, 8, 5, 9, 7, 0, 9, 8, 5, 2, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			9.0435286086582111526563827472958995791513335719871504139242512780719363...
		

Crossrefs

Programs

  • Maple
    evalf(sum((tan(2/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Tan[2/n]^2, {n, 1, Infinity}], 120], yields only 24 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,(tan(2/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A362662 Decimal expansion of Sum_{n>=1} (tan(1/n) - sin(1/n)).

Original entry on oeis.org

8, 2, 2, 0, 8, 2, 2, 0, 0, 8, 0, 3, 5, 8, 8, 2, 0, 2, 9, 3, 5, 8, 7, 0, 1, 1, 8, 7, 1, 5, 9, 9, 3, 5, 2, 0, 7, 3, 0, 4, 4, 6, 0, 4, 3, 8, 1, 1, 6, 5, 3, 2, 6, 3, 9, 0, 8, 3, 6, 8, 5, 9, 3, 9, 3, 4, 3, 7, 1, 0, 5, 3, 4, 5, 3, 5, 4, 3, 6, 8, 1, 3, 2, 4, 6, 0, 0, 4, 7, 1, 3, 4, 7, 4, 3, 2, 2
Offset: 0

Views

Author

Bernard Schott, Apr 29 2023

Keywords

Comments

Series Sum_{n>=1} sin(1/n) and Sum_{n>=1} tan(1/n) -> oo but with u(n) = (tan(1/n) - sin(1/n)), as u(n) ~ 1 / (2*n^3) when n -> oo, the series Sum_{n>=1} u(n) is convergent.

Examples

			Equals 0.822082200803588202935870118715993520730...
		

References

  • J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1 - 41.2, p. 47, Classes Préparatoires aux Grandes Ecoles, Ellipses, 1988.

Crossrefs

Programs

  • Maple
    evalf(sum(tan(1/n) - sin(1/n), n=1..infinity), 120);
  • PARI
    sumpos(n=1, tan(1/n) - sin(1/n)) \\ Michel Marcus, Apr 29 2023
Showing 1-3 of 3 results.