cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248961 Sums of wrecker ball sequences starting with n.

Original entry on oeis.org

0, 1, -2, 5, -292, -241, 14, -437861, -28, -1, 30, 313, -4472, -4223, -2, 55, 3252, -214246256269, -70, -27, 5260887648, 91, -538, -193, -132, -864538549823, -22, 27, 140, 40053, 53088613819206, 86166834699, 86167898716, 86168962733, 86170026754, 49, 204
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 18 2014

Keywords

Comments

a(n) = A248973(n, A228474(n)) = sum of row n in triangle A248939;
a(A000217(n)) = A000330(n).

Examples

			a(1) = 1+0 = 1;
a(2) = 2+1-1-4+0 = -2;
a(3) = 3+2+0 = 5;
a(4) = 4+3+1-2+2-3-9-16-8-17-7-18-6+7+21+6-10-27-45-26-46-25-47-24+0 = -292;
a(5) = 5+4+2-1+3-2-8-15-7-16-6-17-5+8+22+7-9-26-44-25-45-24-46-... = -241;
a(6) = 6+5+3+0 = 14;
a(7) = 7+6+4+1-3+2-4+3-5-14-24-13-1+12-2+13+29+46+28+9-11+10-... = -437861;
a(8) = 8+7+5+2-2+3-3+4-4-13-23-12+0 = -28;
a(9) = 9+8+6+3-1+4-2+5-3-12-22-11+1+14+0 = -1.
		

Crossrefs

Programs

  • Haskell
    import Data.IntSet (singleton, member, insert)
    a248961 n = addup 1 n 0 $ singleton n where
       addup  0 sum  = sum
       addup k x sum s = addup (k + 1) y (sum + x) (insert y s) where
                         y = x + (if (x - j) `member` s then j else -j)
                         j = k * signum x
    (C++) #include
    long A248961(long n) { long c=0, d, S=n; for(std::set A; n; A.insert(n), S += n += A.count(n - (d = n>0 ? c : -c)) ? d : -d) ++c; return S; } // M. F. Hasler, Mar 19 2019
    
  • PARI
    A248961(n,A=[n],c,S=n)={while( n+=sign(n)*if(setsearch(A,n-sign(n)*c+=1), c, -c), A=setunion(A,[n]); S+=n); S} \\ M. F. Hasler, Mar 19 2019
    
  • Python
    def A248961(n):
      A = {n}; c = 0; S = 0
      while n != 0:
        ++c; s = c if n>0 else -c; n += s if n-s in A else -s; A.add(n); S += n
      return S # M. F. Hasler, Mar 19 2019