cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A248995 Number of length n+4 0..2 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

190, 464, 1140, 2802, 6872, 16800, 41084, 100590, 246378, 603406, 1477382, 3616932, 8855718, 21683810, 53094696, 130003772, 318312974, 779389186, 1908348180, 4672636566, 11441043846, 28013571820, 68591653930, 167947819478
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Column 2 of A249001

Examples

			Some solutions for n=6
..0....0....1....1....1....0....2....2....0....0....2....2....2....0....0....0
..0....1....1....0....2....1....1....0....1....2....0....0....1....1....1....1
..2....2....1....2....1....2....1....2....2....0....2....0....0....1....2....0
..0....1....2....1....2....1....0....1....0....2....2....0....2....2....0....2
..0....2....2....0....0....2....2....2....0....0....0....1....2....2....0....1
..0....0....2....0....2....1....2....2....0....2....2....1....1....0....0....2
..1....1....2....0....2....2....1....2....0....0....2....2....1....2....0....1
..0....0....0....2....2....1....2....1....2....0....0....2....1....2....1....1
..1....1....0....2....2....0....1....2....0....0....2....2....1....0....2....2
..1....0....0....0....1....2....1....2....0....1....2....2....2....0....1....0
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +2*a(n-3) +2*a(n-4) +16*a(n-5) -3*a(n-6) -27*a(n-7) -36*a(n-8) -41*a(n-9) -73*a(n-10) -56*a(n-11) +40*a(n-12) +103*a(n-13) +182*a(n-14) +48*a(n-15) +102*a(n-16) +147*a(n-17) +128*a(n-18) -82*a(n-19) +74*a(n-20) +90*a(n-21) -137*a(n-22) -220*a(n-23) -204*a(n-24) -4*a(n-25) -152*a(n-26) -201*a(n-27) -183*a(n-28) +54*a(n-29) -37*a(n-30) -48*a(n-31) +a(n-32) -31*a(n-33) -10*a(n-34) -8*a(n-35) +24*a(n-36) +16*a(n-37)

A248996 Number of length n+4 0..3 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

820, 2668, 8680, 28240, 91888, 299044, 973204, 3167500, 10309372, 33554728, 109215076, 355477276, 1157029012, 3765974644, 12257760052, 39897482020, 129861371368, 422682950584, 1375781835724, 4478003930896, 14575364597464
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Examples

			Some solutions for n=5:
..3....0....1....2....0....0....1....3....2....1....0....3....1....0....0....3
..0....2....0....0....3....0....2....2....2....0....0....1....2....1....3....0
..3....2....3....3....3....2....1....0....3....2....0....2....1....0....0....0
..1....0....0....1....1....2....0....0....2....0....2....0....0....2....0....1
..0....2....2....2....1....2....3....3....0....0....0....0....0....3....3....3
..2....2....3....0....3....3....2....3....0....0....1....1....3....1....3....2
..1....0....1....3....1....3....3....0....1....1....0....0....3....1....3....1
..3....3....1....3....1....2....1....1....3....3....1....0....0....1....2....0
..0....1....1....3....3....3....0....2....0....2....2....0....0....0....1....0
		

Crossrefs

Column 3 of A249001.

Formula

Empirical: a(n) = 3*a(n-1) + 2*a(n-2) - a(n-3) - 9*a(n-4) + 16*a(n-5) - 48*a(n-6) - 21*a(n-7) + 8*a(n-8) + 3*a(n-9).
Empirical g.f.: 4*x*(205 + 52*x - 241*x^2 - 579*x^3 - 36*x^4 - 3382*x^5 - 1168*x^6 + 563*x^7 + 192*x^8) / (1 - 3*x - 2*x^2 + x^3 + 9*x^4 - 16*x^5 + 48*x^6 + 21*x^7 - 8*x^8 - 3*x^9). - Colin Barker, Nov 09 2018

A248997 Number of length n+4 0..4 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

2540, 10360, 42308, 172888, 706704, 2888944, 11810564, 48286456, 197422012, 807188768, 3300330556, 13494048552, 55173290154, 225588339824, 922369809354, 3771323457556, 15419939994758, 63048058448056, 257786893864722
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Column 4 of A249001

Examples

			Some solutions for n=4
..0....1....2....0....0....1....1....0....2....0....1....2....2....0....2....2
..4....0....2....2....0....3....4....0....3....4....3....3....3....1....4....4
..2....1....1....0....0....2....0....1....1....0....4....3....0....0....0....0
..4....3....2....0....3....4....3....4....4....2....0....0....0....0....4....4
..3....1....0....4....0....4....3....4....3....2....4....1....4....0....3....3
..0....4....3....1....4....0....3....4....3....0....4....4....0....1....3....4
..4....2....2....1....4....1....4....0....2....3....3....0....1....1....2....0
..3....1....4....1....1....4....3....0....0....4....2....0....0....0....1....0
		

A248998 Number of length n+4 0..5 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

6450, 32398, 163112, 822348, 4149708, 20952218, 105819690, 534502810, 2700047696, 13640156760, 68910290082, 348142872600, 1758874033678, 8886170481316, 44894831402844, 226818881138008, 1145942126329774
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Column 5 of A249001

Examples

			Some solutions for n=3
..0....1....0....3....0....0....4....1....4....4....0....3....0....0....0....0
..0....1....5....3....1....5....1....5....1....0....2....0....1....1....5....5
..3....5....4....3....2....0....3....5....3....5....0....2....1....1....4....1
..4....1....5....5....2....5....5....3....5....0....1....1....0....5....4....3
..5....0....0....0....1....5....4....2....5....3....1....1....0....1....3....0
..4....0....4....2....2....5....4....3....0....0....0....2....2....4....1....3
..3....0....5....4....0....0....5....0....5....4....1....5....4....1....5....0
		

A248999 Number of length n+4 0..6 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

13990, 82348, 485580, 2865126, 16909524, 99817384, 589354152, 3479916010, 20548067494, 121333048614, 716461085260, 4230692840640, 24982283288368, 147520857046232, 871114227605828, 5143954672207112, 30375223032465730
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Column 6 of A249001

Examples

			Some solutions for n=2
..5....1....0....5....3....6....1....6....4....5....4....6....6....0....5....5
..3....6....6....3....5....5....5....4....0....4....6....3....5....3....3....0
..1....6....4....6....3....1....4....3....1....5....5....1....1....5....0....2
..4....0....5....1....3....3....5....0....1....0....5....2....0....1....2....0
..1....5....6....2....5....3....3....3....5....4....1....2....5....2....5....3
..3....0....3....1....6....0....1....6....0....3....4....1....0....2....3....4
		

A249000 Number of length n+4 0..7 arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

27740, 189660, 1298968, 8902860, 61034658, 418454994, 2869206494, 19673497892, 134897701458, 924972633722, 6342399495490, 43489021952576, 298198855766202, 2044713089447888, 14020347915273238, 96135813057541116, 659191600029773658
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Column 7 of A249001

Examples

			Some solutions for n=2
..4....4....1....1....6....4....6....0....4....0....4....0....6....6....6....4
..5....1....4....4....4....6....1....0....1....2....3....7....0....6....0....3
..4....2....2....4....5....1....7....7....1....1....6....7....6....6....7....3
..0....3....6....5....3....0....0....7....0....6....5....3....1....5....5....6
..5....6....4....3....4....7....3....1....3....0....3....0....6....1....3....2
..4....7....0....0....5....7....3....2....6....0....4....2....3....4....6....3
		

A249002 Number of length 1+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

30, 190, 820, 2540, 6450, 13990, 27740, 50260, 86030, 139450, 217320, 325940, 475630, 674650, 937020, 1274160, 1703970, 2240850, 2908260, 3723400, 4715230, 5905430, 7328400, 9009880, 10991870, 13303750, 15994820, 19100260, 22676370
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Examples

			Some solutions for n=6:
  6  2  5  5  0  5  4  4  3  2  2  6  3  4  0  0
  4  3  4  5  3  1  5  6  1  2  1  6  4  6  1  3
  1  1  6  4  5  6  5  2  0  1  6  6  0  2  1  1
  1  5  5  1  1  4  5  6  2  1  0  6  3  6  0  4
  3  1  0  1  0  3  1  1  2  2  5  2  4  0  5  4
		

Crossrefs

Row 1 of A249001.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 5*a(n-4) - 3*a(n-5) + 6*a(n-6) + 6*a(n-7) - 3*a(n-8) - 5*a(n-9) - a(n-10) + 3*a(n-11) + a(n-12) - a(n-13).
Empirical for n mod 6 = 0: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (47/3)*n
Empirical for n mod 6 = 1: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (86/9)*n + (565/72)
Empirical for n mod 6 = 2: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (181/9)*n - (20/9)
Empirical for n mod 6 = 3: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (2/3)*n + (205/8)
Empirical for n mod 6 = 4: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (221/9)*n - (160/9)
Empirical for n mod 6 = 5: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (46/9)*n + (1685/72).
Empirical g.f.: 10*x*(3 + 16*x + 54*x^2 + 118*x^3 + 179*x^4 + 178*x^5 + 143*x^6 + 84*x^7 + 44*x^8 + 24*x^9 + 21*x^10) / ((1 - x)^6*(1 + x)^3*(1 + x + x^2)^2). - Colin Barker, Nov 09 2018

A249003 Number of length 2+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

58, 464, 2668, 10360, 32398, 82348, 189660, 387900, 744378, 1335780, 2289960, 3737824, 5914730, 9025016, 13447116, 19506256, 27749742, 38646260, 53006324, 71470164, 95143346, 124907012, 162219976, 208226592, 264893594, 333635648
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Row 2 of A249001

Examples

			Some solutions for n=6
..6....6....0....6....3....2....0....6....5....1....0....5....1....6....1....2
..1....1....2....4....6....5....0....0....5....3....5....0....0....6....3....3
..6....2....5....3....0....2....2....3....6....6....6....0....2....2....5....4
..0....0....3....4....2....1....2....1....1....5....2....2....0....4....4....4
..3....2....4....5....6....2....2....6....6....2....3....4....0....5....1....1
..6....6....3....1....4....2....6....6....3....6....2....3....0....5....0....1
		

A249004 Number of length 3+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

112, 1140, 8680, 42308, 163112, 485580, 1298968, 2997774, 6449496, 12811158, 24159584, 42911184, 73629888, 120844328, 193152322, 298869080, 452268778, 666984964, 966771826, 1372738118, 1920965096, 2643444158, 3592832436
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Row 3 of A249001

Examples

			Some solutions for n=5
..1....4....4....0....3....3....1....4....1....0....4....1....0....1....1....3
..1....4....1....0....5....3....0....0....4....4....3....1....2....5....1....2
..2....5....2....2....1....1....0....3....0....2....0....5....2....3....1....0
..0....2....4....4....1....3....0....3....2....1....2....2....0....3....4....3
..0....1....1....5....4....3....0....3....5....5....0....0....5....5....2....3
..5....0....5....5....3....1....5....5....3....5....3....5....3....3....5....1
..1....1....4....0....2....1....4....3....5....4....4....1....2....4....2....1
		

A249005 Number of length 4+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two.

Original entry on oeis.org

216, 2802, 28240, 172888, 822348, 2865126, 8902860, 23177368, 55906496, 122921570, 254998668, 492803174, 916912140, 1618570176, 2775224082, 4580364152, 7372967710, 11513855042, 17636594106, 26371506592, 38792087628
Offset: 1

Views

Author

R. H. Hardin, Oct 18 2014

Keywords

Comments

Row 4 of A249001

Examples

			Some solutions for n=4
..0....0....2....0....0....0....1....0....2....0....2....0....0....2....0....1
..1....1....3....3....4....1....3....3....3....4....3....0....1....2....1....4
..0....4....1....1....3....0....0....0....4....1....3....3....1....0....0....3
..0....1....4....0....4....2....4....4....4....0....2....4....4....4....0....2
..1....0....3....0....2....0....1....1....0....0....4....1....3....4....4....3
..2....0....0....0....1....0....0....0....1....1....0....3....2....4....0....0
..3....0....4....4....3....0....3....0....0....4....2....1....1....0....0....1
..0....4....3....3....1....4....3....2....0....3....0....3....3....2....2....1
		
Showing 1-10 of 13 results. Next